Коллектив авторов - Большая энциклопедия техники

Тут можно читать онлайн Коллектив авторов - Большая энциклопедия техники - бесплатно ознакомительный отрывок. Жанр: Энциклопедии, издательство Array Литагент «Научная книга». Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая энциклопедия техники
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Научная книга»
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - Большая энциклопедия техники краткое содержание

Большая энциклопедия техники - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Энциклопедия техники» – необычная, познавательная и удобная в использовании книга. Издание содержит около 2000 всевозможных технических терминов, понятий и обозначений из различных областей науки, хозяйства и производства. Здесь можно найти все – от описания миксера и другой бытовой техники до статей о тяжелой артиллерии, грейдера, ядерного реактора и медицинского аппарата УЗИ. Книга будет представлять интерес не только для специалистов в данных областях, техников и инженеров, но и для каждого любознательного и разносторонне развитого человека.

Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок

Большая энциклопедия техники - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В первых полупроводниковых детекторах (1956—1957) применялись сплавные или поверхностно-барьерные p-n- переходы в Ge. Данные полупроводниковые детекторы приходилось охлаждать, чтобы снизить уровень шумов, они обладали малой глубиной чувствительной области и не получили значительного распространения. Практическое использование получили в 1960-е гг. полупроводниковые детекторы в виде поверхностно-барьерного перехода в Si. В случае поверхностнобарьерного полупроводникового детектора глубина чувствительной области определяется величиной запирающего напряжения. Эти полупроводниковые детекторы обладают малым шумом при комнатной температуре и используются для фиксации короткопробежных частиц, а также для измерения удельных потерь энергии.

Для фиксации длиннопробежных частиц в 1970—1971 гг. были изобретены полупроводниковые детекторы p-i-n- типа. В кристалл Si р -типа внедряется примесь Li. Ионы Li подвигаются в р -области перехода под воздействием электрического поля и, компенсируя акцепторы, образуют широкую чувствительную i -область собственной проводимости, глубина которой зависит от глубинной диффузии ионов Li и достигает 5 мм. Подобные дрейфовые кремний-литиевые детекторы применяются для фиксации протонов с энергией до 25 Мэв, электронов – до 2 Мэв, дейтронов – до 20 Мэв и др.

Следующий шаг в развитии полупроводниковых детекторов был сделан возвращением к Ge, который обладает большим порядковым номером и большей эффективностью для фиксации гамма-излучения. Дрейфовые германийлитиевые плоские полупроводниковые детекторы используются для фиксации g-квантов с энергией, достигающей несколько сотен кэв. Для фиксации g-квантов с энергией, достигающей 10 Мэв, применяются коаксиальные германийлитиевые детекторы с чувствительным объемом до 100 см 3. Эффективность фиксации g -квантов с энергией меньше 1 Мэв равна 10% и падает при энергиях больше 10 Мэв до 0,1—0,01%.

Для частиц, обладающих высокой энергией, пробег которых не укладывается в чувствительной области, полупроводниковые детекторы дают возможность, помимо фиксации частицы, определить удельные потери энергии, а в некоторых устройствах координату частицы.

Недостатками полупроводниковых детекторов являются: малая эффективность при фиксации g -квантов больших энергий; ухудшение разрешающей способности при загрузках более 10 4частиц в секунду; конечное время жизни полупроводникового детектора при высоких дозах облучения вследствие накопления радиационных дефектов. Небольшие габариты доступных монокристаллов ограничивают использование полупроводниковых детекторов в ряде областей.

Дальнейшее развитие полупроводниковых детекторов связано с получением «сверхчистых» полупроводниковых монокристаллов довольно больших размеров и с возможностью применения GaAs, SiC, CdTe. Полупроводниковые детекторы широко используются в физике элементарных частиц, ядерной физике, а также в химии, медицине, геологии и в промышленности.

Полупроводниковый диод

Полупроводниковый диод – двухэлектродный электронный прибор на базе полупроводникового (ПП) кристалла.

Понятие полупроводниковый диод объединяет приборы с разными принципами действия, которые имеют многофункциональное назначение. Система классификации полупроводниковых диодов соответствует общей системе классификации полупроводниковых приборов.

В наиболее широком классе электропреобразовательных полупроводниковых диодов различают: импульсные диоды, выпрямительные диоды, стабилитроны, диоды СВЧ (видеодетекторы, параметрические, смесительные, генераторные и усилительные, умножительные, переключательные). Среди оптоэлектронных полупроводниковых диодов выделяют ПП квантовые генераторы, светоизлучающие диоды и фотодиоды.

Наиболее многочисленны полупроводниковые диоды, действие которых базируется на применении свойств электронно-дырочного перехода, другими словами р-n- перехода. Если к р-n- переходу диода приложить напряжение в прямом направлении, т. е. подать на его р -область положительный потенциал, то потенциальный барьер, который соответствует переходу, снижается и начинается интенсивный ввод дырок из р- области в n- область и электронов из n- области в р- область. Тем самым по диоду начинает течь большой прямой ток. Если приложить напряжение в обратном направлении, то потенциальный барьер повышается и через р-n- переход протекает очень малый ток вторичных носителей заряда (обратный ток).

На резкой несимметричности вольтамперной характеристики (ВАХ) базируется работа выпрямительных диодов. Для выпрямительных устройств и других сильноточных электрических цепей производятся выпрямительные полупроводниковые диоды, имеющие допустимый выпрямленный ток до 300 А и максимально допустимое обратное напряжение в пределах от 20—30 В до 1—2 кВ. Полупроводниковые диоды аналогичного использования для слаботочных цепей имеют выпрямленный ток < 0,1 А и называются универсальными. При напряжениях, превышающих максимально допустимое обратное напряжение, ток резко возрастает, и появляется необратимый тепловой пробой р-n- перехода, который приводит к выходу полупроводникового диода из строя. С целью повышения максимально допустимого обратного напряжения до нескольких десятков кВ применяют выпрямительные столбы, в которых несколько идентичных выпрямительных полупроводниковых диодов соединены последовательно и расположены в общем пластмассовом корпусе. Инерционность выпрямительных диодов ограничивает частотный предел их использования (как правило, областью частот 50—2000 Гц).

Применение специальных технологических приемов (легирование кремния и германия золотом) позволило создать быстродействующие импульсные полупроводниковые диоды, применяемые, наряду с диодными матрицами, как правило, в слаботочных сигнальных цепях ЭВМ.

При невысоких пробивных напряжениях, как правило, развивается не тепловой, а обратимый лавинный пробой р-n- перехода, т. е. резкое нарастание тока при почти постоянном напряжении, называется напряжением стабилизации. На использовании подобного пробоя базируется работа полупроводниковых стабилитронов. Стабилитроны общего назначения с напряжением стабилизации от 3—5 до 100—150 В используют в основном в стабилизаторах и ограничителях импульсного и постоянного напряжения; прецизионные стабилитроны, у которых встраиванием компенсирующих элементов достигается высокая температурная стабильность, – в качестве источников опорного и эталонного напряжений.

В предпробойной области обратный ток диода подвержен значительным флуктуациям; это свойство р-n- перехода применяют для создания генераторов шума. Инерционность развития лавинного пробоя в р-n- переходе обусловливает сдвиг фаз между напряжением и током в диоде, вызывая (при определенной схеме включения) генерирование СВЧ-колебаний. Это свойство успешно применяют в лавинно-пролетных полупроводниковых диодах, которые позволяют осуществлять генераторы с частотами до 150 ГГц.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая энциклопедия техники отзывы


Отзывы читателей о книге Большая энциклопедия техники, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x