Коллектив авторов - Большая энциклопедия техники

Тут можно читать онлайн Коллектив авторов - Большая энциклопедия техники - бесплатно ознакомительный отрывок. Жанр: Энциклопедии, издательство Array Литагент «Научная книга». Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая энциклопедия техники
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Научная книга»
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - Большая энциклопедия техники краткое содержание

Большая энциклопедия техники - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Энциклопедия техники» – необычная, познавательная и удобная в использовании книга. Издание содержит около 2000 всевозможных технических терминов, понятий и обозначений из различных областей науки, хозяйства и производства. Здесь можно найти все – от описания миксера и другой бытовой техники до статей о тяжелой артиллерии, грейдера, ядерного реактора и медицинского аппарата УЗИ. Книга будет представлять интерес не только для специалистов в данных областях, техников и инженеров, но и для каждого любознательного и разносторонне развитого человека.

Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок

Большая энциклопедия техники - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В качестве полупроводниковых материалов для производства транзисторов применяют преимущественно кремний и германий. В соответствии с технологией получения в кристалле зон с различными типами проводимости транзисторы подразделяются на сплавные, сплавно-диффузионные, диффузионные, конверсионные, эпитаксиальные, мезатранзисторы, планарные и планарно-эпитаксиальные. По конструктивному изготовлению транзисторы делятся на транзисторы в герметичных пластмассовых, металлокерамических или металлостеклянных корпусах и бескорпусные; бескорпусные обладают временной защитой кристаллов от воздействия внешней среды в виде тонкого слоя лака, смолы, легкоплавкого стекла и герметизируются вместе с устройством, в котором их изготавливают. Широкое распространение получили планарно-эпитаксиальные кремниевые и планарные транзисторы.

С изобретением транзисторов наступил период минимизации размеров радиоэлектронной аппаратуры на основе достижений быстро развивающейся полупроводниковой электроники. В сравнении с радиоэлектронной аппаратурой первого поколения на электронных лампах подобная по назначению радиоэлектронная аппаратура второго поколения, на базе полупроводниковых приборов и транзисторах, обладает в десятки и сотни раз меньшими массой и габаритами, большей надежностью и потребляет гораздо меньшую электрическую мощность. Размеры полупроводникового элемента современного транзистора довольно малы. Надежность работы транзисторов характеризуется значениями ~ 105 ч. Транзисторы могут работать при низких напряжениях источников питания, потребляя в этом случае токи в несколько микроампер. Мощные транзисторы работают при напряжениях, достигающих 10—30 В, и токах до нескольких десятков ампер, отдавая мощность до 100 Вт.

Верхний предел диапазона частот, которые усиливаются транзистором, достигает 10 ГГц, что соответствует длине волны электромагнитных колебаний, равной 3 см. В области низких частот по шумовым характеристикам транзисторы успешно конкурируют с малошумящими электрометрическими лампами. В области частот до 1 ГГц транзисторы достигают значения коэффициента шума не более 1,5—3,0 дБ. На более высоких частотах коэффициент шума растет, достигая на частотах 6—10 ГГц 6—10 дБ.

Транзистор является главным элементом современных микроэлектронных приборов. Существуют устройства, получившие название интегральных микросхем, сделанные на одном кристалле полупроводника площадью 30—35 мм 2, с числом электронных устройств до нескольких десятков тысяч. Такие транзисторы являются основой радиоэлектронной аппаратуры третьего поколения. Примером подобной аппаратуры могут служить наручные электронные часы, которые содержат от 600 до 1500 транзисторов, и карманные электронные вычислительные устройства. Переход к применению ИС определил новое направление в производстве и конструировании надежной и малогабаритной радиоэлектронной аппаратуры, которая получила название микроэлектроники. Достоинства транзисторов в сочетании с достижениями технологии их изготовления дают возможность создавать ЭВМ, которые насчитывают до нескольких сотен тысяч элементов, устанавливать сложные электронные устройства на борту космических летательных аппаратов, производить малогабаритную радиоэлектронную аппаратуру для применения в быту, в медицине, различных областях промышленности и т. д. Наряду с достоинствами транзисторы имеют ряд недостатков, главным образом – ограниченный диапазон рабочих температур. К недостаткам транзисторов относятся также с изменением рабочей температуры значительные изменения их параметров и довольно сильная чувствительность к ионизирующим излучениям.

Трохотрон

Трохотрон – многоэлектродный электронно-лучевой прибор, имеющий ленточный трохоидальный электронный пучок, применяемый в основном в качестве коммутатора. Электронный луч образуется под воздействием взаимно перпендикулярных полей: изменяемого электрического, которое создается электродами прибора и постоянного магнитного, создающегося внешним магнитом. Луч проходит главным образом по эквипотенциальной поверхности, имеющей потенциал, близкий к потенциалу катода. Коммутация луча производится в результате управляемого перемещения эквипотенциальной поверхности с помощью изменения потенциала специальных электродов трохотрона, имеющих название лопатки.

В самом распространенном линейном десятикратном трохотроне на экран подается постоянный отрицательный потенциал, равный 50—100 В, а на анод и каждую пластину подается постоянный положительный потенциал, достигающий 100 В.

Трохотроны главных типов различаются в основном формой электродов, образующих ячейку, и расположением ячеек. В двумерном трохотроне электронный пучок управляется двумя отдельными группами ячеек, в бинарном – лопатки различной длины конкретным образом объединены в группы, в кольцевом – ячейки располагаются по окружности, в центре которой размещен цилиндрический катод. Трохотроны обеспечивают гибкое управление токами и используются в различных электрических цепях, как правило, импульсных, для измерения временных интервалов, коммутации цепей, счета импульсов, а также в качестве электронной линии задержки и т. д.

Туннельный диод

Туннельный диод – двухэлектродное электронное устройство на базе полупроводникового кристалла, в котором находится очень узкий потенциальный барьер, препятствующий движению электронов; является разновидностью полупроводникового диода. Вид вольтамперной характеристики (ВАХ) туннельного диода определяется, как правило, квантовомеханическим процессом туннелирования, из-за которого электроны проникают через барьер из одной разрешенной области энергии в другую. Изобретение туннельного диода впервые доказало на практике существование процессов туннелирования в твердых телах. Создание такого диода стало осуществимо в результате прогресса в полупроводниковой технологии, который позволил создавать полупроводниковые материалы со строго заданными электронными свойствами. Путем легирования полупроводника довольно большим количеством конкретных примесей удалось получить очень высокую плотность электронов и дырок в р- и n- областях, не нарушив при этом резкий переход от одной области к другой. В связи с малой шириной перехода (50—150 А) и весьма высокой концентрацией в кристалле легирующей примеси, в электрическом токе, протекающем через туннельный диод, преобладают туннелирующие электроны.

Первый туннельный диод был произведен в 1957 г. из германия; но вскоре после этого были найдены и другие полупроводниковые материалы, из которых можно получить туннельные диоды: Si, InSb, GaAs, InAs, PbTe, GaSb, SiC и др. В силу того что туннельные диоды в определенном интервале напряжений смещения обладают отрицательным дифференциальным сопротивлением и имеют очень малую инерционность, их используют в качестве активных элементов в высокочастотных усилителях электрических колебаний, переключающих устройствах и генераторах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая энциклопедия техники отзывы


Отзывы читателей о книге Большая энциклопедия техники, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x