Коллектив авторов - Большая энциклопедия техники
- Название:Большая энциклопедия техники
- Автор:
- Жанр:
- Издательство:Array Литагент «Научная книга»
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Большая энциклопедия техники краткое содержание
Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
2. Газоразрядные источники света непрерывного излучения, применяемые для освещения помещений, улиц, в киноаппаратуре, светящихся рекламах и т. д., и импульсные источники света, используемые в устройствах телемеханики и автоматики, передачи информации, оптической локации и т. д.
3. Индикаторы газоразрядные (матричные, знаковые, линейные, сигнальные), предназначенные для визуального воспроизведения информации в ЭВМ и других устройствах.
4. Квантовые газоразрядные приборы, которые преобразуют энергию постоянного тока в когерентное излучение – газовые лазеры, квантовые стандарты частоты.
Электронная и ионная оптика
Электронная и ионная оптика – наука о поведении пучков ионов и электронов в вакууме под действием магнитных и электрических полей. Так как изучение электронных пучков началось несколько раньше, нежели ионных, и первые применяют значительно шире, чем вторые, весьма распространен термин «электронная оптика». Электронная и ионная оптика занимается главным образом вопросами отклонения, фокусировки и формирования пучков заряженных частиц, а также образования с их помощью изображений, которые можно визуально отобразить на фотографических пленках или люминесцирующих экранах. Такие изображения чаще всего называют ионно-оптическими и электронно-оптическими изображениями. Развитие электронной и ионной оптики в значительной степени определено потребностями электронной техники.
Зарождение электронной и ионной оптики связано с изобретением в конце XIX в. электронно-лучевой трубки. В первой осциллографической электронно-лучевой трубке, произведенной в 1897 г. К. Ф. Брауном, электронный пучок отклонялся с помощью магнитного поля. Отклонение с помощью электростатического поля реализовал Дж. Дж. Томсон в своих опытах по определению отношения заряда электрона к его массе, пропуская пучок через плоский конденсатор, размещенный внутри электронно-лучевой трубки. В 1899 г. немецкий физик И. Э. Вихерт использовал для фокусировки электронного пучка в электронно-лучевой трубке катушку из изолированной проволоки, по которой тек электрический ток.
Однако только в 1926 г. немецкий ученый Х. Буш теоретически рассмотрел движение заряженных частиц в магнитном поле подобной катушки и доказал, что она может использоваться для получения правильных электронно-оптических изображений, вследствие чего является электронной линзой. Последующая разработка электронных линз (электростатических и магнитных) открыла путь к изобретению электронного микроскопа, электронно-оптического преобразователя и ряда других приборов, в которых образуются правильные электронно-оптические изображения объектов, либо излучающих электроны, либо тем или другим способом воздействующих на электронные пучки. Конструирование специализированных электронно-лучевых трубок для радиолокационной и телевизионной аппаратуры, для воспроизведения, хранения и записи информации и т. п. привело к последующему развитию разделов электронной и ионной оптики, связанных с управлением пучками заряженных частиц.
Сильное влияние на развитие электронной и ионной оптики оказала разработка аппаратуры для анализа потоков ионов и электронов (масс-спектрометров, бета-спектрометров и других аналитических приборов). В электронной и ионной оптике, как правило, не рассматриваются вопросы, которые возникают в технике сверхвысоких частот, только иногда рассматриваются процессы в электронных лампах, ускорителях заряженных частиц и других устройствах и приборах, специфика которых отделяет их от главных направлений электронной и ионной оптики.
Для решения большинства задач электронной и ионной оптики достаточно рассматривать движение заряженных частиц, не выходя за рамки классической механики, так как волновая природа частиц в данных задачах почти не проявляется. В таком приближении электронная и ионная оптика носит название геометрической электронной и ионной оптики, что объясняется наличием глубокой аналогии между геометрической электронной и ионной оптикой и геометрической оптикой световых лучей, которая заключается в том, что поведение пучков заряженных частиц в магнитных и электрических полях во многом сходно с поведением пучков лучей света в неоднородных оптических средах. В основе приведенной аналогии лежит более общая аналогия между световой геометрической оптикой и классической механикой, установленная У. Р. Гамильтоном, который в 1834 г. доказал, что общее уравнение механики подобно по форме оптическому уравнению эйконала. Как и в световой геометрической оптике, в геометрической электронной и ионной оптике вводится понятие преломления показателя, при установлении погрешностей изображения – аберраций, значительная часть которых подобна аберрациям оптических систем, – зачастую применяется метод эйконала. Когда приближение геометрической электронной и ионной оптики недостаточно, используются методы квантовой механики.
В электронно-оптических устройствах широко используются магнитные и электрические поля, имеющие симметрию вращения относительно оптической оси системы. Электронные линзы и электронные зеркала с подобными полями называются осесимметричными. Электрические поля с симметрией вращения образуются электродами в виде диафрагм с круглыми отверстиями, чашечек, цилиндров и т. п. Для получения осесимметричных магнитных полей применяют электромагниты (редко постоянные магниты) с полюсами, имеющими форму тел вращения или тороидальных катушек с намоткой из изолированной проволоки, по которой протекает электрический ток. Осесимметричные зеркала и линзы образуют правильные электронно-оптические изображения, если заряженные частицы движутся довольно близко к оси симметрии поля, а их начальные скорости незначительно отличаются друг от друга. Если данные условия не выполняются, погрешности изображения становятся довольно значительными. Когда изображение и предмет находятся за пределами поля, осесимметричные электронные линзы всегда являются собирающими. В электростатических осесимметричных электронных линзах, как и в светооптических линзах, имеющих сферические поверхности, изображение может быть только перевернутым или прямым, в магнитных электронных линзах оно еще дополнительно повернуто на некоторый угол. Электронно-оптические свойства поля с симметрией вращения обусловливаются положением его основных точек, подобных основным точкам светооптических осесимметричных изображающих систем: двух узловых точек, двух главных точек и двух фокусов. Построение изображения осуществляется по правилам световой геометрической оптики. Электростатическим осесимметричным полям присущи те же пять видов геометрических аберраций третьего порядка, что и центрированным светооптическим системам сферических поверхностей: кривизна поля изображения, сферическая аберрация, астигматизм, дисторсия и кома. В магнитных полях к этим пяти добавляются еще три: анизотропные дисторсия, кома и астигматизм. Помимо этого существуют три вида хроматических аберраций, определенных некоторым неизбежным разбросом энергий, которые поступают в поле частиц. Аберрации полей с симметрией вращения в сравнимых условиях сильно превышают по величине аберрации светооптических центрированных систем, т. е. электронные зеркала и электронные линзы по качеству значительно уступают светооптическим. Вопрос о компенсации аберраций или их снижения является одним из главных в теории электронной и ионной оптики.
Читать дальшеИнтервал:
Закладка: