Коллектив авторов - Большая энциклопедия техники
- Название:Большая энциклопедия техники
- Автор:
- Жанр:
- Издательство:Array Литагент «Научная книга»
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Большая энциклопедия техники краткое содержание
Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Самый распространенный материал при изготовлении криостата – это стекло или металл. Криостат из стекла удобен в научных исследованиях, прозрачный сосуд дает возможность визуального наблюдения помещенного в него исследуемого объекта. Такой криостат состоит из двух сосудов, один вставлен в другой. Сосуд, заполненный основным хладагентом (жидким гелием), помещают в другой сосуд. Но это устройство не отличается прочностью. Металлический криостат обладает прочностью и универсальностью. В качестве основного хладагента также используется жидкий гелий, его теплоизоляцией является медный экран, между ним и объемом с гелием создан вакуум. Для дополнительного охлаждения используется жидкий азот. Все элементы криостата (корпус, емкости с гелием и азотом) сделаны из меди, стали или сплавов и отполированы для теплоотражения. Криостат имеет и поворотные приспособления для перемещения исследуемого объекта. Дальнейшее развитие науки криоэлектроники способствует совершенствованию конструкции криостата.
Мегафон
(см. «Электромегафон»)
Микроскоп
Микроскоп – оптический прибор, позволяющий получать изображения объектов, не видимых вооруженным глазом. Применяется для наблюдения микроорганизмов, клеток, кристаллов, структур сплавов с точностью до 0,20 мкм. Это разрешение микроскопа – наименьшее расстояние до объекта или его элементов, при котором они различимы. Человеческий глаз, имеющий расстояние наилучшего видения 250 мм, имеет минимальное разрешение 0,08—0,2 мм, поэтому применение микроскопа очень эффективно в различных областях науки и производства. Первый прототип микроскопа изобрел в 1590 г. в Голландии З. Янсен, используя известное оптикам свойство системы двух линз увеличивать изображение объектов. В 1609 г. Галилей изобрел зрительную трубу и применил ее как микроскоп.
Применение микроскопов позволило сделать важные научные открытия ученым Р. Гуку и А. Левенгуку в изучении клеточного строения организмов в 1665, 1673 гг. В России первые микроскопы появились в начале XVIII в., их применял в 1762, 1770 гг. Л. Эйлер. В XIX и ХХ вв. продолжалось исследование и совершенствование конструкции микроскопов. Э. Аббе в 1872 г. разработал теорию образования изображений, Дж. Сиркс в 1893 г. открыл интерференционную микроскопию. Первый ультрамикроскоп изобрели ученые Р. Зигмонди, Г. Зидентопф в 1903 г.
Известные российские ученые в микроскопии – А. А. Лебедев, В. П. Линник, Д. С. Рождественский – сделали свои открытия и исследования в середине ХХ в.
Современные микроскопы разделяются на типы по назначению, методам наблюдения и устройству. Но принципиальная конструкция любого микроскопа включает трубку с окулярами, механизмы фокусировки, крепящиеся на штативе и корпусе микроскопа. Наблюдаемый объект находится на предметном столике, над столиком находится устройство крепления объективов, под столиком – конденсор. Объективы и тип конденсора зависят от условий и метода наблюдения. Конденсоры бывают светлопольными, фазово-контрастными, темнопольными, зеркально-линзовыми. Светлопольные конденсоры имеют отличающиеся друг от друга многолинзовые системы, темнопольные также имеют сложные системы линз. Фазово-контрастные конденсоры имеют кольцевые диафрагмы.
Объективы микроскопов имеют различные спектральные характеристики для различных областей спектра: видимой, ультрафиолетовой и инфракрасной. Длина тубуса зависит от конструкции микроскопа и может быть 160, 190 мм. Различные объективы предназначены для разных методов наблюдения: фазово-контрастных, интерференционных, обычных. Каждый объектив рассчитан на определенные условия работы и может быть использован только в этих заданных условиях. Объектив микроскопа определяет выбор типа окуляра. Окуляры бывают компенсационные, фотоокуляры, проекционные окуляры Гюйгенса, кварцевые. Принцип действия любого микроскопа состоит в получении увеличенного изображения наблюдаемого объекта, которое рассматривают в окуляр. Назначение любого микроскопа – дать не столько большое увеличение, но позволить рассмотреть элементы структуры объекта. Увеличения, при которых глаз видит все элементы структуры объекта, считаются полезными. Как правило, они составляют 500—1000 Å. Но в микрофотографии используют и увеличения выше 1000 Å. Методы наблюдения и освещения различаются в зависимости от условий работы и назначения.
Методом светлого поля в проходящем свете наблюдают прозрачные структуры с растворенными в них абсорбирующими элементами – ткани растений, минералы.
Методом светлого поля в отраженном свете наблюдают непрозрачные объекты или структуры – минералы, руду.
Методом темного поля в проходящем свете наблюдают прозрачные, но неабсорбирующие структуры – обыкновенно в биологии.
Методом темного поля в отраженном свете наблюдают непрозрачные объекты или структуры – металлы.
Методом ультрамикроскопии рассматривают объекты или структуры с такими мелкими частицами, которые невозможно обнаружить в самый сильный микроскоп. Такие ультрамикроскопические методы используются в научно-исследовательских целях в области химии.
Методом поляризованного света изучают объекты или структуры с анизотропными элементами – растительные ткани, минералы, сплавы.
Методом фазового контраста наблюдают прозрачные объекты, которые оказалось невозможно рассмотреть методом светлого поля, так как в нем небольшие элементы структуры слабоконтрастны – тонкие шлифы минералов.
Методом интерференционного контраста наблюдают прозрачные и бесцветные объекты. Он позволяет рассчитать общую массу и количество сухого вещества в микрообъекте.
Методом наблюдения в люминесцентном свете исследуют различные объекты в научно-исследовательских и производственных целях в микробиологии, микрохимии, дефектоскопии, изучении почвы. При этом методе наблюдаемые объекты освещают сине-фиолетовым светом, что вызывает свечение объектов, дающее информацию об их составе и свойствах. Этот метод – один из самых распространенных.
Методом наблюдения в ультрафиолетовых лучах исследуют структуры, прозрачные в видимом свете, но хорошо различимые в ультрафиолетовом (например, клетки). Такой метод широко применяется в микробиологии.
Методом наблюдения в инфракрасных лучах изучают объекты, непрозрачные в видимом свете, но видимые с помощью электронно-оптического преобразователя (например, кристаллы, минералы).
Методом микрофотографирования изучают изображения на светочувствительном слое.
Современные микроскопы оборудованы специальными устройствами микрофотографии, которые осуществляют преобразование оптической системы микроскопа и дают возможность проектировать изображение объекта на фотопленку. Этот метод микрофотографии эффективен в научных исследованиях, особенно невидимых объектов или объектов со слабым свечением.
Читать дальшеИнтервал:
Закладка: