БСЭ БСЭ - Большая Советская Энциклопедия (ВО)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (ВО) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (ВО)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (ВО) краткое содержание

Большая Советская Энциклопедия (ВО) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (ВО) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (ВО) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

W = A sin (2π/ T ) ( t - t 1) = A sin (2π/ T ) ( t - r/c ).

Выражение (j = (2p/ T ) ( t- r/c ) называется фазой В. Разность фаз в двух точках rr 2равна:

j 2- j 1= (2p/ Tc ) ( r 2- r 1) = (2p/l) ( r 2- r 1).

В точках, отстоящих друг от друга на целое число В., разность фаз составляет целое число 2p, т. е. колебания в этих точках протекают синхронно — в фазе. Наоборот, в точках, отстоящих друг от друга на нечётное число полуволн, т. е. для которых r 2- r 1 = (2 N - 1)l/2, где N = 1, 2..., разность фаз равна нечётному числу p, т. е. j 2- j 1 = (2N - 1)p. Колебания в таких точках происходят в противофазе: в то время, как отклонение в одной равно А , в другой оно обратно по знаку, т. е. равно — А и наоборот.

Распространение В. всегда связано с переносом энергии, который можно количественно характеризовать вектором потока энергии 1 . Этот вектор для упругих В. называется вектором Умова (по имени русского учёного А. А. Умова, введшего это понятие), для электромагнитных — вектором Пойнтинга. Направление вектора Умова совпадает с направлением переноса энергии, а абсолютная величина равна энергии, переносимой В. за единицу времени через площадку 1 см 2, расположенную перпендикулярно вектору I . При малых отклонениях от положения равновесия I = КА, где К — коэффициент пропорциональности, зависящий от природы В. и свойств среды, в которой В. распространяется.

Поверхности равных фаз, фронт В.Важной характеристикой В. является вид поверхностей равных фаз, т. е. таких поверхностей, в любой точке которых в данный момент времени фазы одинаковы. Форма поверхности равной фазы зависит от условий возникновения и распространения В. В простейшем случае такими поверхностями являются плоскости, перпендикулярные направлению распространения В., а В. называется плоской. В., у которых поверхностями равных фаз являются сферы и цилиндры, называются соответственно сферическими и цилиндрическими. Поверхности равных фаз называются также фронтами В. В случае конечной или одиночной В. фронтом называется передний край В., непосредственно граничащий с невозмущённой средой.

Интерференция В.При приходе в данную точку среды двух В. их действие складывается. Особо важное значение имеет наложение так называемых когерентных В. (т. е. В., разность фаз которых постоянна, не меняется со временем). В случае когерентности В. имеет место явление, называемое интерференцией: в точках, куда обе В. приходят в фазе, они усиливают друг друга; в точках же, куда они попадают в противофазе, — ослабляют друг друга. В результате получается характерная интерференционная картина (см., например, рис. 3 ). См. также Интерференция света , Когерентность .

Стоячие В., собственные колебания.При падении плоской В. на плоское же отражающее препятствие возникает отражённая плоская В. Если при распространении В. в среде и при отражении их от препятствия не происходит потерь энергии, то амплитуды падающей и отражённой В. равны между собой. Отражённая В. интерферирует с падающей В., в результате чего в тех точках, куда падающая и отражённая В. приходят в противофазе, результирующая амплитуда падает до 0, т. е. точки всё время остаются в покое, образуя неподвижные узлы колебаний, а в тех местах, где фазы В. совпадают, В. усиливают друг друга, образуя пучности колебаний. В результате получается так называемая стоячая В. ( рис. 4 ). В стоячей В. поток энергии отсутствует: энергия в ней (при условии, что потерь нет) перемещается только в пределах, ограниченных смежными узлом и пучностью.

Стоячая В. может существовать также и в ограниченном объёме. В частности, в случае, изображённом на рис. 4, на месте ВВ можно вообразить себе такое же препятствие, что и справа. Между двумя стенками будет существовать стоячая В., если расстояние между ними равно целому числу полуволн. Вообще стоячая В. может существовать в ограниченном объёме лишь в том случае, если длина В. находится в определённом соотношении с размерами объёма. Это условие выполняется для ряда частот v 1, v 2, v 3,..., называется собственными частотами данного объёма.

Дифракция.При падении В. на непрозрачное для неё тело или на экран позади тела образуется теневое пространство (заштриховано на рис. 5 , а и 5 , б). Однако границы тени не резки, а размыты, причём размытость увеличивается при удалении от тела. Это явление огибания тела В. называется дифракцией. На расстояниях порядка d 2 / l от тела, где d — его поперечный размер, тень практически полностью смазана. Чем больше размеры тела, тем большее пространство занимает тень. Тела, размеры которых малы по сравнению с длиной В., вообще не создают тени, они рассеивают падающую на них В. во всех направлениях. Изменение амплитуды В. при переходе из «освещённой» области в область тени происходит по сложному закону с чередующимися уменьшением и увеличением амплитуды ( рис. 6 , а и 7 ), что обусловлено интерференцией В., огибающих тело.

Дифракция имеет место также при прохождении В. через отверстие ( рис. 5 , б и 6 , б), где она также выражается в проникновении В. в область тени и в некотором изменении характера В. в «освещённой» области: чем меньше диаметр отверстия по сравнению с длиной В., тем шире область, в которую проникает В. См. также Дифракция света .

Поляризация В.Как уже сказано, плоскость, в которой происходят колебания поперечной В., перпендикулярна направлению распространения. Эта особенность поперечных В. обусловливает возможность возникновения явления поляризации, которая заключается в нарушении симметрии распределения возмущений (например, смещений и скоростей в механических В. или напряжённостей электрических и магнитных полей в электромагнитных В.) относительно направления распространения. В продольной В., в которой возмущения всегда направлены вдоль направления распространения В., явления поляризации возникнуть не могут.

Если колебания возмущения Е происходят всё время в каком-то одном направлении ( рис. 8 , а), то имеет место простейший случай линейно-поляризованной, или плоско-поляризованной В. Возможны и другие, более сложные типы поляризации. Например, если конец вектора Е , изображающего возмущение, описывает эллипс или окружность в плоскости колебаний ( рис. 8 , б), то имеет место эллиптическая или круговая поляризация. Скорость распространения поперечных В. может зависеть от состояния поляризации.

Поляризация может возникнуть: из-за отсутствия симметрии в возбуждающем В. излучателе, при распространении В. в анизотропной среде (см. Анизотропия ), при преломлении и отражении В. на границе двух сред. Подробнее см. Поляризация света .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (ВО) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (ВО), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x