БСЭ БСЭ - Большая Советская Энциклопедия (ГИ)
- Название:Большая Советская Энциклопедия (ГИ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ГИ) краткое содержание
Большая Советская Энциклопедия (ГИ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Открытие Г. существенно расширило физические представления об элементарных частицах, поскольку были впервые открыты частицы с массой, большей нуклонной, и установлена новая важнейшая характеристика элементарных частиц — странность . Введение странности понадобилось для объяснения ряда парадоксальных (с точки зрения существовавших представлений) свойств Г. Интенсивное рождение Г. при столкновении адронов высокой энергии с несомненностью свидетельствовало о том, что они обладают сильным взаимодействием. С другой стороны, если бы распад Г. вызывался сильным взаимодействием, их время жизни должно было бы составлять по порядку величины 10 -23 сек , что в 10 13раз (на 13 порядков) меньше установленного на опыте. Время жизни Г. можно объяснить, если считать, что их распад происходит за счёт слабого взаимодействия , относительная интенсивность которого в этой области энергий как раз на 12—14 порядков меньше сильного (а следовательно, время распада во столько же раз больше). Парадоксом казалось то, что частицы, обладающие сильным взаимодействием, не могут распадаться с помощью этого взаимодействия.
Важное значение для разрешения этого парадокса имел тот факт, что при столкновении p-мезонов и нуклонов с нуклонами Г. всегда рождаются совместно с К-мезонами ( рис. 1 ), в поведении которых обнаруживаются те же странности, что и у Г. Особенности поведения Г. и К-мезонов были объяснены в 1955 Гелл-Маном и Нишиджимой существованием особой характеристики адронов — странности (S), которая сохраняется в процессах сильного и электромагнитного взаимодействий. Если приписать К +- и К 0-мезонам странность S = +1, а L-Г. и S-Г. — равное по величине и противоположное по знаку значение странности, S = — 1, и считать странность p-мезонов и нуклонов равной нулю, то сохранение суммарной странности частиц в сильных взаимодействиях объясняет и совместное рождение L- и S-Г. с К-мезонами, и невозможность распада частиц с неравной нулю странностью (такие частицы получили название странных частиц) с помощью сильных взаимодействий на частицы с нулевой странностью. При этом X = Г., которые рождаются совместно с двумя К-мезонами, следует приписать S = —2, а W —-Г. — странность S = — 3. Распады Г. указывают на то, что процессы, обусловленные слабыми взаимодействиями, протекают с изменением странности. Рис. 2 иллюстрирует процессы сильного и слабого взаимодействия Г.
Согласно современной теории элементарных частиц, каждому Г. должна соответствовать античастица , отличающаяся от своего Г. знаком электрического и барионного зарядов и странности. Все антигипероны наблюдались на опыте; последним был открыт (1971) антиомега-Г. , или W +( рис. 3 ).
Сильное взаимодействие Г. Помимо сохранения странности, сильные взаимодействия Г. обладают определенной симметрией, называется изотопической инвариантностью . Эта симметрия была установлена ранее для нуклонов и p-мезонов и проявляется в том, что частицы группируются в некоторые семейства — изотонические мультиплеты [(р, n) и (p —, p 0, p +), где р означает протон, а n — нейтрон]. Частицы, входящие в определенный изотопический мультиплет, одинаково участвуют в сильном взаимодействии, имеют почти равные массы и отличаются лишь электромагнитными характеристиками (электрическими зарядами, магнитными моментами). Число частиц в изотопическом мультиплете характеризуется специальным квантовым числом — изотопическим спином I и равно 2 I + 1. Г. образуют 4 изотопических мультиплета (см. табл.).
Таблица гиперонов
L-гиперон (синглет) | S-гиперон (триплет) | X-гиперон (дуплет) | W-гиперон (синглет) | |||||||
Состав изотопического мультиплета | L ° | S + | S 0 | S - | X 0 | X - | W - | |||
Масса, Мэв | 1115,6 | 1189,4 | 1192,5 | 1197,3 | 1314,7 | 1321,3 | 1672,4 | |||
Изотонический спин I | 0 | 1 | 1/2 | 0 | ||||||
Странность S | -1 | -1 | -2 | -3 | ||||||
Время жизни, сек | 2,52·10 -10 | 0,80·10 -10 | По теоретическим оценкам 10 -20 | 1,49·10 -10 | 3,03·10 -10 | 1,66·10 -10 | 1,3·10 -10 | |||
Основные схемы распада* | L®°{ | r+p - | S +®{ | r+p 0 | S 0®L 0+g | S 0® n+p - | X 0®L 0+p 0 | X 0®L 0+p - | W -®{ | X 0+p - |
X -+p 0 | ||||||||||
n+p 0 | n+p + | L 0+K - |
* В таблице не указаны распады гиперонов с испусканием лептонов; они составляют по порядку величины доли процента от основных способов распада.
Предположение о существовании изотопических мультиплетов Г. позволило Гелл-Ману и Нишиджиме предсказать существование S 0и X 0до их экспериментального открытия.
Г. L, S, X по ряду своих свойств аналогичны нуклонам. Эта аналогия послужила исходным пунктом в поисках симметрии сильных взаимодействий, более широкой, чем изотопическая инвариантность. Наибольший успех при этом имела т. н. унитарная симметрия (SU 3-симметрия), на основе которой была создана систематика адронов. С помощью этой симметрии удалось, например, предсказать существование и свойства W —-Г. (см. Элементарные частицы ).
Распады Г. Основные способы распада Г. указаны в табл. Распады Г. подчиняются следующим закономерностям: 1) DS = 1 — странность изменяется по абсолютной величине на единицу: исключение составляет распад S 0на L 0и фотон, S 0® L 0+ g , протекающий за счёт электромагнитного взаимодействия (отсюда и время жизни S 0должно быть ~ 10 -20 сек , а не 10 -10 сек ) и поэтому не сопровождающийся изменением странности. Этот закон запрещает прямой распад Õ-Г. на нуклон и p-мезоны, т.к. при таком распаде странность изменилась бы на две единицы. Распад Õ-Г. происходит в два этапа: X ® L 0+ p; L 0® N + p (где N означает нуклон). Поэтому Õ-Г. называют каскадным. Каскадные распады претерпевают также W —-Г.
2)DQ = DS — в распадах с испусканием лептонов изменение заряда Q адронов равно изменению странности S . Этот закон запрещает, например, распад S +® n + m ++ n (m +— положительный мюон, n — нейтрино).
3) D I = 1/ 2— изотопический спин меняется на 1/ 2. Это правило позволяет объяснить соотношения между вероятностями различных наблюдаемых способов распада Г.
При взаимодействии быстрых частиц с ядрами могут возникать гипер-ядра , в которых один или несколько нуклонов в результате сильного взаимодействия превратились в Г.
Лит.: Гелл-Манн М., Розенбаум П. Е., Элементарные частицы, в кн.: Элементарные частицы, пер. с англ., М., 1963 (Над чем думают физики, в. 2); Эдер Р. К., Фаулер Э. К., Странные частицы, пер. с англ., М., 1966; Фриш Д., Торндайк А., Элементарные частицы, пер. с англ., М., 1966.
Л . Г . Ландсберг .
Читать дальшеИнтервал:
Закладка: