БСЭ БСЭ - Большая Советская Энциклопедия (ДИ)
- Название:Большая Советская Энциклопедия (ДИ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ДИ) краткое содержание
Большая Советская Энциклопедия (ДИ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Изложенная схема позволяет лишь обнаружить наличие систематических расхождений и, вообще говоря, непригодна для их численной оценки с последующим исключением из результатов наблюдений. Эта цель может быть достигнута только при многократных измерениях (при повторных реализациях указанной схемы).
Лит.: Шеффе Г., Дисперсионный анализ, пер. с англ., М., 1963; Смирнов Н. В., Дунин-Барковский И. В., Курс теории вероятностей и математической статистики для технических приложений, 2 изд., М., 1965.
Л. Н. Большев.
Дисперсионный анализ (в химии)
Дисперсио'нный ана'лизв химии, совокупность методов определения дисперсности , т. е. характеристики размеров частиц в дисперсных системах. Д. а. включает различные способы определения размеров свободных частиц в жидких и газовых средах, размеров каналов-пор в тонкопористых телах (в этом случае вместо понятия дисперсности используют равнозначное понятие пористости), а также удельной поверхности. Одни из методов Д. а. позволяют получать полную картину распределения частиц (пор) по размерам (объёмам), а другие дают лишь усреднённую характеристику дисперсности (пористости).
К первой группе относятся, например, методы определения размеров отдельных частиц непосредственным измерением (ситовой анализ, оптическая и электронная микроскопия) или по косвенным данным: скорости оседания частиц в вязкой среде ( седиментационный анализ в гравитационном поле и в центрифугах), величине импульсов электрического тока, возникающих при прохождении частиц через отверстие в непроводящей перегородке (кондуктометрический метод, см. Коултера прибор ), или др. показателям.
Вторая группа методов объединяет оценку средних размеров свободных частиц и определение удельной поверхности порошков и пористых тел. Средний размер частиц находят по интенсивности рассеянного света ( нефелометрия ), с помощью ультрамикроскопа, методами диффузии и т.д.; удельную поверхность — по адсорбции газов (паров) или растворённых веществ, по газопроницаемости, скорости растворения и др. способами. Ниже приведены границы применимости различных методов Д. а. (размеры частиц в м ):
Ситовой анализ..................................................10 -2—10 -4
Седиментационный анализ
в гравитационном поле.....................................10 -4—10 -6
Кондуктометрический метод............................10 -4—10 -6
Микроскопия........................................…..........10 -4—10 -7
Метод фильтрации.............................…............10 -5—10 -7
Центрифугирование....................…...................10 -6—10 -8
Ультрацентрифугирование...........….................10 -7—10 -9
Ультрамикроскопия...........................................10 -7—10 -9
Нефелометрия....................................…............10 -7—10 -9
Электронная микроскопия................................10 -7—10 -9
Метод диффузии................................................10 -7—10 -10
Д. а. широко используют в различных областях науки и промышленного производства для оценки дисперсности систем (суспензий, эмульсий, золей, порошков, адсорбентов и т.д.) с величиной частиц от нескольких миллиметров (10 -3 м ) до нескольких нанометров (10 -9 м ).
Лит.: Фигуровский Н. А., Седиментометрический анализ, М. — Л., 1948; Ходаков Г. С., Основные методы дисперсионного анализа порошков, М., 1968; Коузов П. А., Основы анализа дисперсного состава промышленных пылей и измельченных материалов, Л., 1971; Рабинович Ф. М., Кондуктометрический метод дисперсионного анализа, Л., 1970; Irani R. R., Callis C. F., Particle size, Measurement, interpretation and application, N. Y. — L., 1963.
Дисперсия
Диспе'рсия(от лат. dispersio — рассеяние), в математической статистике и теории вероятностей, наиболее употребительная мера рассеивания, т. е. отклонения от среднего. В статистическом понимании Д.
есть среднее арифметическое из квадратов отклонений величин x i от их среднего арифметического
В теории вероятностей Д. случайной величины Х называется математическое ожидание Е ( Х — m х ) 2квадрата отклонения Х от её математического ожидания m х = Е ( Х ). Д. случайной величины Х обозначается через D ( X ) или через s 2 X . Квадратный корень из Д. (т. е. s, если Д. есть s 2) называется средним квадратичным отклонением (см. Квадратичное отклонение ).
Для случайной величины Х с непрерывным распределением вероятностей, характеризуемым плотностью вероятности р ( х ), Д. вычисляется по формуле
где
Об оценке Д. по результатам наблюдения см. Статистические оценки .
В теории вероятностей большое значение имеет теорема: Д. суммы независимых слагаемых равна сумме их Д. Не менее существенно Чебышева неравенство , позволяющее оценивать вероятность больших отклонений случайной величины Х от её математического ожидания.
Лит.: Гнеденко Б. В., Курс теории вероятностей, 5 изд., М., 1969.
Дисперсия волн
Диспе'рсияволн, зависимость фазовой скорости гармонических волн от их частоты. Д. определяется физическими свойствами той среды, в которой распространяются волны. Например, в вакууме электромагнитные волны распространяются без дисперсии, в вещественной же среде, даже в такой разреженной, как ионосфера Земли, возникает Д. волн. Ультразвуковые волны также обнаруживают дисперсию (см. Дисперсия звука ).
Наличие Д. волн приводит к искажению формы сигналов при распространении их в среде. Это объясняется тем, что гармонические волны разных частот, на которые может быть разложен сигнал, распространяются с различной скоростью (подробнее см. Волны , Групповая скорость ). Д. света при его распространении в прозрачной призме приводит к разложению белого света в спектр (см. Дисперсия света ).
Дисперсия звука
Диспе'рсия зву'ка,зависимость фазовой скорости монохроматических звуковых волн от частоты. Д. з. является причиной изменения формы звуковой волны (звукового импульса) при распространении его в среде. Различают Д. з., обусловленную физическими свойствами среды, и Д. з., обусловленную наличием границ тела, в котором звуковая волна распространяется, и от свойств тела не зависящую.
Д. з. первого типа может вызываться различными причинами. Наиболее важны случаи Д. з., связанной с релаксационными процессами (см. ниже), происходящими в среде при прохождении звуковой волны. Механизм возникновения релаксационной Д. з. можно выяснить на примере многоатомного газа. При распространении звука в газе молекулы газа совершают поступательное движение. Если газ одноатомный, то никаких других движений, кроме поступательных, атомы газа совершать не могут. Если же газ многоатомный, то при столкновениях молекул между собой могут возникать вращательные движения молекул, а также колебательные движения атомов, составляющих молекулу. При этом часть энергии звуковой волны тратится на возбуждение этих колебательных и вращательных движений. Переход энергии от звуковой волны (т. е. от поступательного движения) к внутренним степеням свободы (т. е. к колебательным и вращательным движениям) происходит не мгновенно, а за некоторое время, которое называется временем релаксации t. Это время определяется числом соударений, которое должно произойти между молекулами для перераспределения энергии между всеми степенями свободы. Если период звуковой волны мал по сравнению с t (высокие частоты), то за период волны внутренние степени свободы не успеют возбудиться и перераспределение энергии не успеет произойти. В этом случае газ будет вести себя так, как будто никаких внутренних степеней свободы вовсе нет. Если же период звуковой волны много больше, чем t (низкие частоты), то за период волны энергия поступательного движения успеет перераспределиться на внутренние степени свободы. При этом энергия поступательного движения будет меньше, чем в случае, когда внутренних степеней свободы не было бы. Поскольку упругость газа определяется энергией, приходящейся на поступательные движения молекул, то, следовательно, упругость газа, а значит и скорость звука, также будет меньше, чем в случае высоких частот. Иными словами, в некоторой области частот, близких к частоте релаксации, равной w р= 1/t, скорость звука увеличивается с ростом частоты, т. е. имеет место так называемая положительная дисперсия. Если c 0 — скорость звука при малых частотах (wt « 1), а c ¥— при очень больших частотах (wt » 1), то скорость звука для произвольной частоты описывается формулой
Читать дальшеИнтервал:
Закладка: