БСЭ БСЭ - Большая Советская Энциклопедия (КА)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (КА) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (КА)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.9/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (КА) краткое содержание

Большая Советская Энциклопедия (КА) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (КА) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (КА) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И. Н. Дьяконова.

Капиллярные волны

Капилля'рные во'лны, волны на поверхности жидкости малой длины. В восстановлении равновесного состояния поверхности жидкости при К. в. основную роль играют силы поверхностного натяжения.

Капиллярные явления

Капилля'рные явле'ния,физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К К. я. относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром. Искривление поверхности ведёт к появлению в жидкости дополнительного капиллярного давления D p , величина которого связана со средней кривизной r поверхности уравнением Лапласа: D p = p 1 — p 2 . = 2s 12/ r , где (s 12— поверхностное натяжение на границе двух сред; pp 2 — давления в жидкости 1 и контактирующей с ней среде ( фазе ) 2. В случае вогнутой поверхности жидкости ( r < 0) давление в ней понижено по сравнению с давлением в соседней фазе: p 1 < p 2 и D p < 0. Для выпуклых поверхностей ( r > 0) знак D p меняется на обратный. Капиллярное давление создаётся силами поверхностного натяжения, действующими по касательной к поверхности раздела. Искривление поверхности раздела ведёт к появлению составляющей, направленной внутрь объёма одной из контактирующих фаз. Для плоской поверхности раздела ( r = ¥) такая составляющая отсутствует и D p = 0.

К. я. охватывают различные случаи равновесия и движения поверхности жидкости под действием межмолекулярных сил и внешних сил (в первую очередь силы тяжести).

В простейшем случае когда внешние силы отсутствуют или скомпенсированы, поверхность жидкости всегда искривлена. Так, в условиях невесомости ограниченный объём жидкости, не соприкасающейся с др. телами, принимает под действием поверхностного натяжения форму шара. Эта форма отвечает устойчивому равновесию жидкости, поскольку шар обладает минимальной поверхностью при данном объёме, и, следовательно, поверхностная энергия жидкости в этом случае минимальна.

Форму шара жидкость принимает и в том случае, если она находится в другой, равной по плотности жидкости (действие силы тяжести компенсируется архимедовой выталкивающей силой, см. Архимеда закон ). При нескомпенсированной силе тяжести картина существенно меняется Маловязкая жидкость (например, вода), взятая в достаточном количестве, принимает форму сосуда, в который она налита. Её свободная поверхность оказывается практически плоской, т.к. силы земного притяжения преодолевают действие поверхностного натяжения, стремящегося искривить и сократить поверхность жидкости. Однако по мере уменьшения массы жидкости роль поверхностного натяжения снова становится определяющей: при дроблении жидкости в среде газа или газа в жидкости образуются мелкие капли или пузырьки практически сферической формы (см. Капля ) .

Свойства систем, состоящих из многих мелких капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их образования во многом определяются кривизной поверхности частиц, т. е. К. я. Не меньшую роль К. я. играют и при образовании новой фазы: капелек жидкости при конденсации паров, пузырьков пара при кипении жидкостей, зародышей твёрдой фазы при кристаллизации.

При контакте жидкости с твёрдыми телами на форму её поверхности существенно влияют явления смачивания, обусловленные взаимодействием молекул жидкости и твёрдого тела. На рис. 1 показан профиль поверхности жидкости, смачивающей стенки сосуда. Смачивание означает, что жидкость сильнее взаимодействует с поверхностью твёрдого тела (капилляра, сосуда), чем находящийся над ней газ. Силы притяжения, действующие между молекулами твёрдого тела и жидкости, заставляют её подниматься по стенке сосуда, что приводит к искривлению примыкающего к стенке участка поверхности. Это создаёт отрицательное (капиллярное) давление, которое в каждой точке искривленной поверхности в точности уравновешивает давление, вызванное подъёмом уровня жидкости. Гидростатическое давление в объёме жидкости при этом изменений не претерпевает.

Если сближать плоские стенки сосуда таким образом, чтобы зоны искривления начали перекрываться, то образуется вогнутый мениск— полностью искривленная поверхность. В жидкости под мениском капиллярное давление отрицательно, под его действием жидкость всасывается в щель до тех пор, пока вес столба жидкости (высотой h ) не уравновесит действующее капиллярное давление D p . В состоянии равновесия

( r 1— r 2) gh = D p = 2s 12/ r ,

где r 1и r 2— плотность жидкости 1 и газа 2; g — ускорение свободного падения. Это выражение, известное как формула Д. Жюрена (J. Jurin, 1684—1750), определяет высоту h капиллярного поднятия жидкости, полностью смачивающей стенки капилляра. Жидкость, не смачивающая поверхность, образует выпуклый мениск, что вызывает сё опускание в капилляре ниже уровня свободной поверхности ( h < 0).

Капиллярное впитывание играет существенную роль в водоснабжении растений, передвижении влаги в почвах и др. пористых телах. Капиллярная пропитка различных материалов широко применяется в процессах химической технологии.

Искривление свободной поверхности жидкости под действием внешних сил обусловливает существование т. н. капиллярных волн («ряби» на поверхности жидкости). К. я. при движении жидких поверхностей раздела рассматривает физико-химическая гидродинамика.

Движение жидкости в капиллярах может быть вызвано разностью капиллярных давлений, возникающей в результате различной кривизны поверхности жидкости. Поток жидкости направлен в сторону меньшего давления: для смачивающих жидкостей — к мениску с меньшим радиусом кривизны ( рис. 2 , а).

Пониженное, в соответствии с Кельвина уравнением , давление пара над смачивающими менисками является причиной капиллярной конденсации жидкостей в тонких порах.

Отрицательное капиллярное давление оказывает стягивающее действие на ограничивающие жидкость стенки ( рис. 2 , б) . Это может приводить к значительной объёмной деформации высокодисперсных систем и пористых тел — капиллярной контракции. Так, например, происходящий при высушивании рост капиллярного давления приводит к значительной усадке материалов.

Многие свойства дисперсных систем (проницаемость, прочность, поглощение жидкости) в значительной мере обусловлены К. я., т.к. в тонких порах этих тел реализуются высокие капиллярные давления.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (КА) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (КА), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x