БСЭ БСЭ - Большая Советская Энциклопедия (КО)
- Название:Большая Советская Энциклопедия (КО)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (КО) краткое содержание
Большая Советская Энциклопедия (КО) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Континента'льный кли'мат,климат, формирующийся в условиях преобладающего воздействия на атмосферу крупных массивов суши; климат внутри материков. В умеренных широтах К. к. характеризуется обычно большой годовой амплитудой температуры воздуха (жарким летом и холодной зимой) и значительной суточной её изменчивостью. От морского климата К. к. отличается пониженной средней годовой температурой, влажностью, увеличенной запылённостью воздуха. Облачность в условиях К. к. сравнительно небольшая, осадки невелики, максимум их обычно приходится на лето, малы и скорости ветра. Погода обладает большей изменчивостью, чем в морском климате. В К. к. тропиков годовая амплитуда температуры воздуха не так велика, как в умеренных широтах, а осадков выпадает больше, чем в морском климате. В полярных широтах при большой годовой амплитуде температуры воздуха лето очень холодное. К. к. может в ослабленном виде распространяться и на ближайшие к материкам части океанов, если туда в течение всего года поступают воздушные массы с материка. От К. к. следует отличать муссонный климат, формирующийся под преобладающим влиянием континентальных воздушных масс зимой и морских — летом. Между морским и К. к. существуют постепенные переходы, например климат З. Европы преимущественно морской, Европейской части СССР — умеренно континентальный, Восточной Сибири — резко континентальный, Д. Востока — муссонный.
С. П. Хромов.
Континентальный шельф
Континента'льный шельф,см. в ст. Шельф.
Континенты
Контине'нты(от лат. continens, родительный падеж continentis — материк), крупнейшие массивы суши Земли; то же, что материки.
Континуум (в математике)
Конти'нуум(от лат. continuum — непрерывное) в математике, термин, употребляемый для обозначения образований, обладающих известными свойствами непрерывности (полные формулировки см. в 1 и 2), и для обозначения определённой мощности (см. Мощность множества ) , а именно, мощности множества действительных чисел (см. 3).
1) Наиболее изученным непрерывным образованием в математике является система действительных чисел, или т. н. числовой К. Свойства непрерывности системы действительных чисел могут быть охарактеризованы различными способами (при помощи различных «аксиом непрерывности»). Если основным понятием считать понятие неравенства ( а < b ), то непрерывность числового К. можно, например, охарактеризовать следующими двумя положениями: а) между любыми двумя числами а < b лежит по крайней мере ещё одно число с (для которого а < с < b ) ; б) если все числа разбиты на два класса А и В так, что каждое число а класса А меньше любого числа b класса В, то либо в классе А есть наибольшее число, либо в классе В есть наименьшее число (аксиома непрерывности Дедекинда).
2) В топологии, являющейся не чем иным как геометрией непрерывности, свойства непрерывности пространства или любого множества формулируются при помощи понятия предельной точки. Основное понятие связности множества, лежащего в топологическом пространстве (или всего пространства), определяется так: множество М называется связным, если при любом разбиении его на два непересекающихся непустых подмножества A и В найдётся хотя бы одна точка, принадлежащая одному из них и предельная для другого. К. в топологии называют любой связный компакт (см. Компактность ) . Среди множеств, лежащих на прямой или в n -мерном евклидовом пространстве, компактами являются замкнутые ограниченные множества. Т. о., в евклидовых пространствах К. можно определить как связные замкнутые ограниченные множества. Единственными К. в этом смысле, лежащими на числовой прямой, являются отрезки (т. е. множества чисел, удовлетворяющих неравенствам а £ х £ b ) . По строгому смыслу этого принятого в топологии определения множество всех действительных чисел не есть К.
3) Мощность множества действительных чисел называется мощностью К. и обозначают готической буквой c или древнеевропейской буквой À («алеф») (в отличие от других мощностей — без индекса). Каждый топологический К. имеет ту же мощность c. Известно, что мощность c больше мощности À 0счётных множеств. В решении вопроса, является ли мощность К. ближайшей следующей за À 0мощностью, заключается т. н. континуума проблема.
Лит. см. при ст. Множеств теория.
Континуум (растительности)
Конти'нуумрастительности, непрерывность растительного покрова; проявляется в постепенном переходе от одного растительного сообщества к другому при их соседстве (пространственный К.) и при смене одного сообщества другим во времени (временной К.). Представление о К. некоторыми геоботаниками оспаривается, т. к. иногда между фитоценозами наблюдаются чёткие границы вследствие резких изменений рельефа или по др. причинам. Концепция К. возникла в 20-х гг. 20 в.
Континуума проблема
Конти'нуума пробле'ма,задача, состоящая в том, чтобы доказать или опровергнуть средствами множеств теории следующее утверждение, называемое континуум-гипотезой (К.-г.): мощность континуума есть первая мощность, превосходящая мощность множества всех натуральных чисел. Обобщённая континуум-гипотеза (О. к.-г.) гласит, что для любого множества Р первая мощность, превосходящая мощность этого множества, есть мощность множества всех подмножеств множества Р.
К.-г. была высказана Г. Кантором в начале 80-х гг. 19 в. Многочисленные попытки доказать К.-г., предпринятые самим Кантором и мн. выдающимися математиками кон. 19—нач. 20 вв., оказались безуспешными. Сложившаяся ситуация привела ряд крупных математиков (французские математики Р. Бэр, А. Лебег, советский математик Н. Н. Лузин и др.) к убеждению, что К. п. не может быть решена традиционными средствами теории множеств. Это убеждение было решающим образом подтверждено точными методами математической логики и аксиоматической теории множеств. В 1936 К. Гёдель доказал, что О. к.-г. совместна с одной естественной системой аксиоматической теории множеств и, следовательно, не может быть опровергнута традиционными средствами. Наконец, в 1963 американский логик П. Коэн, используя изобретённый им т. н. метод вынуждения, сумел доказать, что и отрицание К.-г. совместно с этой системой, так что К.-г. невозможно доказать с помощью обычных методов теории множеств. Последователи Коэна затем получили методом вынуждения много результатов, проливающих свет на роль К.-г. и О. к.-г. и их взаимоотношение с др. теоретико-множественными принципами.
Читать дальшеИнтервал:
Закладка: