БСЭ БСЭ - Большая Советская Энциклопедия (МА)
- Название:Большая Советская Энциклопедия (МА)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (МА) краткое содержание
Большая Советская Энциклопедия (МА) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Лит.: Вейль Г., О философии математики. Сборник работ, перевод с немецкого, М. — Л., 1934; Гейтинг А., Интуиционизм, перевод с английского, М., 1965; Френкель А. А., Бар-Хиллел И., Основания теории множеств, перевод с английского, М., 1966.
А. Г. Драгалин Б. А. Кушнер.
Математический маятник
Математи'ческий ма'ятник,материальная точка, совершающая под действием силы тяжести колебания вдоль дуги окружности, расположенной в вертикальной плоскости. Практически М. м. можно считать груз, подвешенный на нерастяжимой нити, если размеры груза очень малы по сравнению с длиной нити, масса нити очень мала по сравнению с массой груза. См. Маятник .
«Математический сборник»
«Математи'ческий сбо'рник»,советский научный журнал, публикующий оригинальные научные исследования, относящиеся к различным разделам математики. Издаётся в Москве. Основан в 1866 Московским математическим обществом («М. с.» — старейший из издающихся в СССР математических журналов). В 1932—35 выходил как объединённый орган Московского, Ленинградского и Казанского математических обществ; с 1936 — орган АН СССР, а с 1948 — АН СССР и Московского математического общества. «М. с.» первоначально издавался на средства, собранные среди членов общества; из-за финансовых трудностей в некоторые годы выходил нерегулярно. С 1926 выходит регулярно, по одному тому в год (до 1934 по 4 номера, а в 1935—1937 по 6 номеров); с 1938 ежегодно выходит 2 тома по 3 номера, а с 1956 — 3 тома в год по 4 номера каждый, с 1936 ведётся «Новая серия» и идёт двойная нумерация томов [с 1(43)]. Тираж (1974) около 2 тысяч экземпляров.
Математический союз
Математи'ческий сою'змеждународный (International Mathematical Union, IMU), научное объединение математиков, созданное в 1952. Членами М. с. (1972) являются 43 страны, в том числе СССР (с 1957), Польша, Венгрия, Чехословакия, ГДР, КНДР, Румыния, Югославия, Болгария, Куба. Страны — члены М. с. разбиты на 5 групп: члены 5-й, старшей группы — СССР, США, Великобритания; члены 4-й — Япония, Франция, Италия, ФРГ, Польша. Высший орган М. с. — Генеральная ассамблея, созываемая 1 раз в 4 года, обычно непосредственно перед очередным Международным конгрессом математиков (см. Математические конгрессы международные). Практическое руководство осуществляется Исполкомом, избираемым Генеральной ассамблеей на 4 года. В состав Исполкома входят президент, 2 вице-президента, генеральный секретарь, 5 членов и бывший президент М. с. (с правом совещательного голоса).
С 1 января 1971 по 1 января 1975 президент М. с. — профессор К. Чандрасекхаран (Индия), вице-президенты — профессор Н. Джекобсон (США) и академик Л. С. Понтрягин (СССР), генеральный секретарь — профессор О. Фростман (Швеция). Исполком М. с. собирается для рассмотрения текущих дел не реже 1 раза в год.
Страны — члены М. с. осуществляют своё участие в союзе через Национальные комитеты математиков; Национальный комитет советских математиков, созданный в 1957, функционирует при АН СССР (председатель — академик Виноградов).
Задачи М. с.: организация и поощрение международного сотрудничества в области математики; подготовка научной программы и помощь в организации Международных конгрессов математиков; поддержка исследований в области математики в развивающихся странах, содействие подъёму уровня математического образования в этих странах, содействие повышению уровня математического образования во всех странах; содействие развитию прикладных разделов математики и внедрению математических методов в другие науки.
При М. с. функционируют комиссии по математическому образованию и по научному обмену. В обеих комиссиях участвуют советские математики. Комиссия по математическому образованию созывает раз в 4—5 лет международные конгрессы по математическому образованию.
М. с. оказывает научную организационную и финансовую помощь важнейшим международным мероприятиям в области математики — конференциям, симпозиумам, летним школам. М. с. организует (а также издаёт и распространяет) циклы лекций в крупных научных центрах по актуальным направлениям современной математики. М. с. оказывает помощь в посылке высококвалифицированных лекторов в развивающиеся страны для подъёма уровня научных исследований в этих странах.
Л. С. Понтрягин, А. Б. Жижченко.
Математический формализм
Математи'ческий формали'зм, одно из основных направлений в основаниях математики, представители которого, следуя Д. Гильберту , считают, что каждый раздел математики может (а на достаточно продвинутой стадии своего построения и должен) быть подвергнут полной формализации , то есть излагаться в виде исчисления ( формальной системы ), развивающегося по некоторым вполне определённым правилам ; при этом гарантией правомерности существования и изучения какого-либо раздела математики должна быть не интерпретация его в терминах некоторой внешней по отношению к нему действительности, а исключительно его непротиворечивость . Эти тезисы (в особенности второй) связаны, с далеко идущими следствиями лишь по отношению к тем разделам математики, которые имеют дело с какой-либо формой понятия бесконечности . Последовательная формулировка концепции М. ф. как раз и возникла в качестве одной из реакций на парадоксы , обнаруженные в рамках изучающей это понятие множеств теории . Коротко говоря, эта концепция сводится к утверждению о содержательной истинности «финитных» (то есть содержательно интерпретируемых, не использующих понятия бесконечности) выводов из математической теории, если только непротиворечивость этой формализованной теории доказана финитными средствами.
Лит.: Гильберт Д., Основания геометрии, перевод с немецкого, М. — Л., 1948, добавл. 6—10; Клини С. К., Введение в метаматематику, перевод с английского, М., 1957, § 8, 14, 15, 42, 79 (библ.); Новиков П. С., Элементы математической логики, М., 1959 (введение); Чёрч А., Введение в математическую логику, перевод с английского, т. 1, М., 1960 (введение); Генцен Г., Непротиворечивость чистой теории чисел, перевод с немецкого, в книге: Математическая теория логического вывода, М., 1967, с.77—153: Карри Х. Б., Основания математической логики, перевод с английского, М., 1969, гл. 1—4.
Ю. А. Гастев.
Математическое обеспечение
Математи'ческое обеспече'ниеЦВМ, система программ, приданная к конкретной ЦВМ и предназначенная для обеспечения её использования, а также математические методы и алгоритмы решения задач, по которым составлены данные программы. Состоит из общего М. о., разрабатываемого предприятием (фирмой), поставляющим ЦВМ, и специального М. о., разрабатываемого пользователями машины. Общее М. о. поступает в распоряжение каждого пользователя. Стоимость общего М. о. входит в стоимость ЦВМ и составляет значительную её часть (30 % и более).
Читать дальшеИнтервал:
Закладка: