БСЭ БСЭ - Большая Советская Энциклопедия (НА)
- Название:Большая Советская Энциклопедия (НА)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (НА) краткое содержание
Большая Советская Энциклопедия (НА) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Новые черты социалистических Н. формируются под решающим воздействием рабочего класса, ведущей интернациональной силы Н. Революционные изменения всей социально-экономической, политической и духовной жизни в условиях социализма вырабатывают социалистическое национальное самосознание. В зрелом социалистическом обществе интенсивно протекает единый процесс расцвета и сближения Н. Подлинный расцвет происходит не на путях национальной обособленности, а на базе интернационализации экономики, политики и единой идеологии, а также формирования интернациональных черт в культуре, духовном облике социалистических Н. Поэтому расцвет Н. способствует их сближению, а сближение Н. усиливает их расцвет.
Одной из самых существенных черт социалистических Н. является их братское сотрудничество и взаимопомощь на основе принципов социалистического интернационализма, которые приводят к развитию новых интернациональных общностей, таких, как советский народ, крепнущее содружество социалистических народов.
В ходе строительства коммунизма ускоряется процесс сближения Н., который ведёт к стиранию их различий, связанных с устаревшими формами жизни, и даже к слиянию отдельных малочисленных этнических общностей. Стирание национальных различий — процесс более длительный, чем стирание классовых различий. Полное слияние Н. произойдёт в результате их дальнейшего расцвета и постепенного, всё более тесного сближения во всех сферах жизни. Коммунисты не сторонники увековечивания национальных различий, они поддерживают объективный прогрессивный процесс всестороннего сближения Н., создающего предпосылки их будущего слияния на основе полной добровольности и демократизма. Марксисты-ленинцы выступают как против сдерживания этого процесса, так и против его искусственного форсирования. Отчётливое знание перспектив развития Н. особенно важно для социалистических стран, общественные отношения которых, в том числе и национальные отношения, научно регулируются и направляются к определённой цели. Опираясь на марксистско-ленинскую теорию, можно предвидеть, что полная победа коммунизма во всём мире создаст условия для слияния Н. и все люди будут принадлежать к всемирному бесклассовому и безнациональному человечеству, имеющему единую экономику и единую по содержанию богатейшую и многообразную коммунистическую культуру.
Лит.: Маркс К. и Энгельс Ф., Манифест Коммунистической партии, Соч., 2 изд., т. 4: их же, О польском вопросе, там же; Энгельс Ф., По и Рейн, там же, т. 13; его же, Происхождение семьи, частной собственности и государства, там же, т. 21; его же, О разложении феодализма и возникновении национальных государств, там же; Ленин В. И., Что такое «друзья народа» и как они воюют против социал-демократов?, Полн. собр. соч., 5 изд., т. 1; его же, От какого наследства мы отказываемся?, там же, т. 2; его же, Положение Бунда в партии, там же, т. 8; его же, К вопросу об общенациональной революции, там же, т. 15; его же, Критические заметки по национальному вопросу, там же, т. 24; его же, О «культурно-национальной» автономии, там же; его же, О национальной программе РСДРП, там же; его же, Тезисы реферата по национальному вопросу. Между 10 и 20 января (23 января и 2 февраля) 1914 г., там же; его же, Под чужим флагом, там же, т. 26; его же, Социалистическая революция и право нации на самоопределение, там же, т. 27; его же, Речь по национальному вопросу 29 апреля (12 мая) 1917 г., там же, т. 31: его же, II Конгресс Коммунистического Интернационала, там же, т. 41; его же, О пролетарской культуре, там же; его же, III Конгресс Коммунистического Интернационала, там же, т. 44; его же, К вопросу о национальностях или об «автономизации», там же, т. 45; Программа КПСС (Принята XXII съездом КПСС), М., 1973; Международное совещание коммунистических и рабочих партий. Документы и материалы, М., 1969; Материалы XXIV съезда КПСС, М., 1971; Марксизм-ленинизм о пролетарском интернационализме. [Сб.], М., 1969; Ленинизм и национальный вопрос в современных условиях, 2 изд., М., 1974. См. также лит. при статьях Интернационализм , Национальный вопрос , Национализм .
С. Т. Калтахчян.
Нацумэ Сосэки
На'цумэ Сосэ'ки(литературное имя; настоящее имя Кинноскэ) (5.1.1867, Токио, — 9.12.1916, там же), японский писатель. Выступил как поэт в жанре хокку. Первый роман «Ваш покорный слуга кот» (1905—1906, рус. пер. 1960) — сатира на японскую интеллигенцию. В повести «Мальчуган» (1906, рус. пер. 1960) Н. рисует неопытного юношу-учителя в столкновении с затхлой провинциальной средой. Н. развил своё эстетическое учение о красоте, противопоставив его утилитарным идеалам современности (повесть «В дороге», 1906). Трагедия японского интеллигента, подавленного внешним превосходством западноевропейской культуры и в то же время ещё не освободившегося от старых феодальных оков, наделённого чуткой совестью, становится главной темой психологических романов Н.: трилогия «Сансиро» (1908), «Затем» (1909), «Врата» (1910) — вся в рус. пер. 1973; «Сердце» (1914, рус. пер. 1935), неоконченный роман «Свет и тьма» (1916).
Лит.: История современной японской литературы, М., 1961; Конрад Н., Японская литература, М., 1974; Гривнин В., Нацумэ Сосэки. Биобиблиографический указатель, М., 1959.
Н. Г. Иваненко.
«Начала» Евклида
«Нача'ла» Евкли'да(греч. Stoichéia, буквально — азбука; переносное значение — основные начала), научное произведение, написанное Евклидом в 3 в. до н. э., содержащее основы античной математики: элементарной геометрии, теории чисел, алгебры, общей теории отношений и метода определения площадей и объёмов, включавшего элементы теории пределов. Евклид подвёл в этом сочинении итог трехсотлетнему развитию греческой математики и создал прочный фундамент для дальнейших математических исследований. «Н.» Е. не являются, однако, энциклопедией математических знаний своей эпохи. Так, в «Н.» Е. не излагается теория конических сечений, которая была тогда достаточно развита, отсутствуют здесь и вычислительные методы.
«Н.» Е. построены по дедуктивной системе: сначала приводятся определения, постулаты и аксиомы, затем формулировки теорем и их доказательства (см. Дедукция ) . Вслед за определением основных геометрических понятий и объектов (например, точки, прямой) Евклид доказывает существование остальных объектов геометрии (например, равностороннего треугольника) путём их построения, которое выполняется на основании пяти постулатов. В постулатах утверждается возможность выполнения некоторых элементарных построений, например «что от всякой точки до всякой точки (можно) провести прямую линию» (1 постулат); «И что от всякого центра и всяким раствором (может быть) описан круг» (III постулат). Особое место среди постулатов занимает V постулат (аксиома о параллельных): «И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти прямые неограниченно встретятся с той стороной, где углы меньше двух прямых». Относительная сложность формулировки привела к стремлению многих математиков (на протяжении почти 2 тыс. лет) вывести его как теорему из др. основных положений геометрии. Попытки доказать V постулат продолжались вплоть до работ Н. И. Лобачевского, построившего первую систему неевклидовой геометрии, в которой этот постулат не выполняется (см. Лобачевского геометрия ) . За постулатами в «Н.» Е. приводятся аксиомы — предложения о свойствах отношений равенства и неравенства между величинами. Например: «Равные одному и тому же равны и между собой» (1-я аксиома); «И целое больше части» (8-я аксиома).
Читать дальшеИнтервал:
Закладка: