БСЭ БСЭ - Большая Советская Энциклопедия (ОП)
- Название:Большая Советская Энциклопедия (ОП)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ОП) краткое содержание
Большая Советская Энциклопедия (ОП) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Лит.: Головня А., Свет в искусстве оператора, М., 1945; его же, Мастерство кинооператора, М., 1965; Косматов Л., Операторское мастерство, М., 1962; его же, Свет в интерьере, М., 1973; Ильин Р. Н., Изобразительные ресурсы экрана, М., 1973.
А. Д. Головня.
Операторы
Опера'торыв квантовой теории, математическое понятие, широко используемое в математическом аппарате квантовой механики и квантовой теории поля и служащее для сопоставления определённому вектору состояния (или волновой функции) y др. определённых векторов (функций) y'. Соотношение между y и y' записывается в виде y ' = y, где
— оператор. В квантовой механике физическим величинам (координате, импульсу, моменту количества движения, энергии и т.д.) ставятся в соответствие О.
(О. координаты, О. импульса и т.д.), действующие на вектор состояния (или волновую функцию) y, т. е. на величину, описывающую состояние физической системы.
Простейшие виды О., действующих на волновую функцию y( х ) (где х — координата частицы), — О. умножения (например, О. координаты ,
y = х y) и о. дифференцирования (например, О. импульса
,
y =
, где i — мнимая единица,
— постоянная Планка). Если y — вектор, компоненты которого можно представить в виде столбца чисел, то О. представляет собой квадратную таблицу — матрицу .
В квантовой механике в основном используются линейные операторы . Это означает, что они обладают следующим свойством: если y 1 = y' 1и
y 2 = y' 2, то
( c 1y 1+ c 2y 2) = c 1y' 1+ c 2y' 2, где c 1и с 2 — комплексные числа. Это свойство отражает суперпозиции принцип — один из основных принципов квантовой механики.
Существенные свойства О. определяются уравнением
y n = l n y n , где l n — число. Решения этого уравнения y n называется собственными функциями (собственными векторами) оператора
. Собственные волновые функции (собственные векторы состояния) описывают в квантовой механике такие состояния, в которых данная физическая величина L имеет определённое значение l n . Числа l n называется собственными значениями О.
, а их совокупность — спектром О. Спектр может быть непрерывным или дискретным; в первом случае уравнение, определяющее y n , имеет решение при любом значении l n (в определённой области), во втором — решения существуют только при определённых дискретных значениях l n . Спектр О. может быть и смешанным: частично непрерывным, частично дискретным. Например, О. координаты и импульса имеют непрерывный спектр, а О. энергии в зависимости от характера действующих в системе сил — непрерывный, дискретный или смешанный спектр. Дискретные собственные значения О. энергии называются энергетическими уровнями.
Собственные функции и собственные значения О. физических величин должны удовлетворять определённым требованиям. Т. к. непосредственно измеряемые физич. величины всегда принимают веществ. значения, то соответствующие квантовомеханич. О. должны иметь веществ. собств. значения. Далее, поскольку в результате измерения физич. величины в любом состоянии y должно получаться одно из возможных собств. значений этой величины, необходимо, чтобы произвольная волновая функция (вектор состояния) могла быть представлена в виде линейной комбинации собств. функций (векторов) y n О. этой физич. величины; др. словами, совокупность собств. функций (векторов) должна представлять полную систему. Этими свойствами обладают собств. функции и собств. значения т.н. самосопряжённых О., или эрмитовых операторов .
С О. можно производить алгебраич. действия. В частности, под произведением О. 1и
2понимается такой О.
=
1
2, действие которого на вектор (функцию) y даёт
y = y’’, если
2y = y’ и
1y’ = y’’. Произведение О. в общем случае зависит от порядка сомножителей, т. е .
1
2 ¹
2
1. Этим алгебра О. отличается от обычной алгебры чисел. Возможность перестановки порядка сомножителей в произведении двух О. тесно связана с возможностью одновременного измерения физических величин, которым отвечают эти О. Необходимым и достаточным условием одновременной измеримости физических величин является равенство
1
2 =
2
1(см. Перестановочные соотношения ).
Уравнения квантовой механики могут быть формально записаны точно в том же виде, что и уравнения классической механики (гейзенберговское представление в квантовой механике), если заменить физические величины, входящие в уравнения классической механики, соответствующими им О. Всё различие между квантовой и классической механикой сведется тогда к различию алгебр. Поэтому О. в квантовой механике иногда называют q -числами, в отличие от с -чисел, т. е. обыкновенных чисел, с которыми имеет дело классическая механика.
О. можно не только умножать, но и возводить в степень, образовывать из них ряды и рассматривать функции от О. Произведение эрмитовых О. в общем случае не является эрмитовым. В квантовой механике используются и неэрмитовы О., важным классом которых являются унитарные операторы . Унитарные О. не меняют норм («длин») векторов и «углов» между ними. Неизменность нормы вектора состояния даёт возможность интерпретации его компонент как амплитуд вероятности равным образом в исходной и преобразованной функции. Поэтому действием унитарного О. описывается развитие квантовомеханической системы во времени, а также её смещение как целого в пространстве, поворот, зеркальное отражение и др. Выполняемые унитарными О. преобразования (унитарные преобразования) играют в квантовой механике такую же роль, какую в классической механике играют канонические преобразования (см. Механики уравнения канонические ).
Читать дальшеИнтервал:
Закладка: