БСЭ БСЭ - Большая Советская Энциклопедия (ОП)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (ОП) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (ОП)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (ОП) краткое содержание

Большая Советская Энциклопедия (ОП) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (ОП) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (ОП) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

По традиции О. принято подразделять на геометрическую, физическую и физиологическую. Геометрическая оптика оставляет в стороне вопрос о природе света, исходит из эмпирических законов его распространения и использует представление о световых лучах , преломляющихся и отражающихся на границах сред с разными оптическими свойствами и прямолинейных в оптически однородной среде. Её задача — математически исследовать ход световых лучей в среде с известной зависимостью преломления показателяn от координат либо, напротив, найти оптические свойства и форму прозрачных и отражающих сред, при которых лучи проходят по заданному пути. Методы геометрической О. позволяют изучить условия формирования оптического изображения объекта как совокупности изображений отд. его точек и объяснить многие явления, связанные с прохождением оптического излучения в различных средах (например, искривление лучей в земной атмосфере вследствие непостоянства ее показателя преломления, образование миражей , радуг и т.п.). Наибольшее значение геометрическая О. (с частичным привлечением волновой О., см. ниже) имеет для расчёта и конструирования оптических приборов — от очковых линз до сложных объективов и огромных астрономических инструментов. Благодаря развитию и применению вычислительной математики методы таких расчётов достигли высокого совершенства и сформировалось отдельное направление поучившее название вычислительной О.

По существу отвлекается от физической природы света и фотометрия , посвященная главным образом измерению световых величин , Фотометрия представляет собой методическую основу исследования процессов испускания, распространения и поглощения излучения по результатам его действия на приёмники излучения. Ряд задач фотометрии решается с учётом закономерностей восприятия человеческим глазом света и его отдельных цветовых составляющих. Изучением этих закономерностей занимается физиологическая О., смыкающаяся с биофизикой и психологией и исследующая зрительный анализатор (от глаза до коры головного мозга) и механизмы зрения .

Физическая О. рассматривает проблемы, связанные с природой света и световых явлений. Утверждение, что свет есть поперечные электромагнитные волны, основано на результатах огромного числа экспериментальных исследований дифракции света , интерференции света , поляризации света и распространения света в анизотропных средах (см. Кристаллооптика , Оптическая анизотропия ). Совокупность явлений, в которых проявляется волновая природа света, изучается в крупном разделе физической О. — волновой О. Её математическим основанием служат общие уравнения классической электродинамики — Максвелла уравнения . Свойства среды при этом характеризуются макроскопическими материальными константами — диэлектрической проницаемостью e и магнитной проницаемостью m, входящимив уравнения Максвелла в виде коэффициентов. Эти константы однозначно определяют показатель преломления среды: n = картинка 120.

Феноменологическая волновая О., оставляющая в стороне вопрос о связи величин e и m (обычно известных из опыта) со структурой вещества, позволяет объяснить все эмпирические законы геометрической О. и установить границы её применимости. В отличие от геометрической, волновая О. даёт возможность рассматривать процессы распространения света не только при размерах формирующих или рассеивающих световые пучки систем >>l(длины волны света) но и при любом соотношении между ними. Во многих случаях решение конкретных задач методами волновой О. оказывается чрезвычайно сложным. Поэтому получила развитие квазиоптика (особенно применительно к наиболее длинноволновому участку спектра оптического излучения и смежному с ним т. н. субмиллиметровому поддиапазону радиоизлучения) в которой процессы распространения, преломления и отражения описываются геометрооптически но в которой при этом нельзя пренебрегать и волновой природой излучения. Геометрический и волновой подходы формально объединяются в геометрической теории дифракции, в которой дополнительно к падающим, отражённым и преломлённым лучам геометрической О. постулируется существование различного типа дифрагированных лучей.

Огромную роль в развитии волновой О. сыграло установление связи величин e и m с молекулярной и кристаллической структурой вещества (см. Кристаллооптика , Металлооптика , Молекулярная оптика ). Оно позволило выйти далеко за рамки феноменологического описания оптических явлений и объяснить все процессы, сопровождающие распространение света в рассеивающих и анизотропных средах и вблизи границ разделов сред с разными оптическими характеристиками, а также зависимость от l оптических свойств сред — их дисперсию, влияние на световые явления в средах давления, температуры, звука, электрического и магнитного полей и многое др.

В классической волновой О. параметры среды считаются не зависящими от интенсивности света; соответственно, оптические процессы описываются линейными (дифференциальными) уравнениями. Выяснилось, однако, что во многих случаях, особенно при больших интенсивностях световых потоков, это предположение несправедливо; при этом обнаружились совершенно новые явления и закономерности. В частности, зависимость показателя преломления от напряжённости поля световой волны (нелинейная поляризуемость вещества) приводит к изменению угла преломления светового пучка на границе двух сред при изменении его интенсивности, к сжатию и расширению световых пучков ( самофокусировка света и его самодефокусировка), к изменению спектрального состава света, проходящего через такую (нелинейную) среду (генерация оптических гармоник), к взаимодействию световых пучков и появлению в излучении т. н. комбинационных частот, выделенных направлений преимущественного распространения света (параметрические явления, см. Параметрические генераторы света ) и т.д. Эти явления рассматриваются нелинейной оптикой , получившей развитие в связи с созданием лазеров .

Хорошо описывая распространение света в материальных средах, волновая О. не смогла удовлетворительно объяснить процессы его испускания и поглощения. Исследование этих процессов ( фотоэффекта , фотохимических превращений молекул, закономерностей спектров оптических и пр.) и общие термодинамические соображения о взаимодействии электромагнитного поля с веществом привели к выводу, что элементарная система (атом, молекула) может отдавать энергию электромагнитному полю (или, напротив, получать её от него) лишь дискретными порциями (квантами), пропорциональными частоте излучения n (см. Излучение ). Поэтому световому электромагнитному необходимо сопоставить поток квантов света — фотонов , распространяющихся в вакууме со скоростью светас = 2,99·10 9 см / сек . Фотоны обладают энергией h n, импульсом с абсолютной величиной h n/ c и массой h n/ c 2(их масса покоя равна нулю, см. Масса ), а также спиномh /2p; здесь h = 6,65·10 27 эрг / секПланка постоянная . В простейшем случае энергия, теряемая или приобретаемая изолированной квантовой системой при взаимодействии с оптическим излучением, равна энергии фотона, а в более сложном — сумме или разности энергий нескольких фотонов (см. Многофотонные процессы ). Явления, в которых при взаимодействии света и вещества существенны квантовые свойства элементарных систем, рассматриваются квантовой О. методами, развитыми в квантовой механике и квантовой электродинамике , а оптические явления, не связанные с изменением собственных состояний квантовых систем (например, давление света , Доплера эффект ), могут трактоваться в рамках как классических волновых, так и фотонных представлений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (ОП) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (ОП), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x