БСЭ БСЭ - Большая Советская Энциклопедия (ОС)
- Название:Большая Советская Энциклопедия (ОС)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ОС) краткое содержание
Большая Советская Энциклопедия (ОС) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
По характеру регистрируемых сигналов и особенностям их воспроизведения основные типы О. э. т. подразделяют на низкочастотные, широкополосные (высоко — и сверхвысокочастотные), высоковольтные, запоминающие, многолучевые, с радиальным отклонением луча. Низкочастотные О. э. т. рассчитаны на полосу частот исследуемых переменных во времени процессов в диапазоне от нуля до десятков Мгц . Они имеют, как правило, электростатическую систему фокусировки и отклонения, достаточную чувствительность (отклонение луча до 5 мм / в ), зелёный цвет свечения экрана. Широкополосные О. э. т. ( рис. ) позволяют исследовать сигналы в полосе частот от нуля до нескольких Ггц . Они превосходят другие типы О. э. т. по чувствительности (до 10 мм / в ), скорости записи (до десятков тыс. км / сек ) и разрешающей способности (ширина линии от 50 до 300 мкм ). Расширение полосы частот достигается использованием вместо сигнальных пластин отклоняющей замедляющей системы с «бегущей волной», обычно в форме спирали, а высокая скорость записи — ускорением электронов после их отклонения (послеускорением) посредством высокого напряжения (8—25 кв ). Высоковольтные О. э. т., применяемые для регистрации импульсов высокого напряжения, имеют очень малую чувствительность (от 0,05 до 20 мм / кв ) и высокую электрическую прочность (до нескольких десятков кв ). Запоминающие О. э. т. (потенциалоскопы) с видимым изображением, служащие для запоминания информации в виде электрических сигналов и воспроизведения их на экране, имеют наибольшее время хранения записанной информации (от нескольких десятков сек до нескольких ч ). Многолучевые О. э. т., служащие для наблюдения на одном экране нескольких одновременно протекающих процессов, имеют в одном баллоне чаще всего 2, 5, 10 независимых низкочастотных электронно-оптических систем формирования лучей. В О. э. т. с радиальным отклонением луча, используемых для исследования явлений в полярной системе координат, луч при помощи двух пар отклоняющих пластин развёртывают по окружности. Напряжение сигнала подаётся на обкладки конического конденсатора и отклоняет луч в радиальном направлении. По параметрам эти О. э. т. близки к низкочастотным.
Лит.: Шерстнев Л. Г., Электронная оптика и электроннолучевые приборы, М., 1971; Миллер В. А., Куракин Л. А., Приёмные электроннолучевые трубки, 2 изд., М., 1971; Жигарев А. А., Электронная оптика и электроннолучевые приборы, М., 1972.
Г. И. Семеник, М. В. Цехонович.

Конструктивная схема широкополосной осциллографической электроннолучевой трубки: 1 — подогреватель катода; 2 — катод; 3 — электрод, ускоряющий электроны; 4 — коаксиальные вводы сигнала; 5 — электропроводящее покрытие; 6 — выводы системы послеускорения; 7 — катодолюминесцентный экран; 8 — спираль системы послеускорения; 9 — стеклянный баллон; 10 — горизонтальные отклоняющие пластины; 11 — спиральная отклоняющая система; 12 — анод; 13 — модулятор.
Осциллоскоп
Осциллоско'п(от лат. oscillo — качаюсь и греч. skopéō — смотрю, наблюдаю), то же, что осциллограф ; название «О.» употребляют редко, преимущественно в тех случаях, когда прибор используется только для визуального наблюдения быстро меняющихся во времени электрических процессов.
Осциллятор
Осцилля'тор(от лат. oscillo — качаюсь), физическая система, совершающая колебания. Термином «О.» пользуются для любой системы, если описывающие её величины периодически меняются со временем.
Классический О. — механическая система, совершающая колебания около положения устойчивого равновесия.
В положении равновесия потенциальная энергия U системы имеет минимум. Если отклонения х от этого положения малы, то в разложении U ( x ) по степеням х можно считать U ( x ) = kx 2/2 ( k — постоянный коэффициент); при этом квазиупругая сила F = . Такие О. называются гармоническими, их движение описывается линейным уравнением
, решение которого имеет вид х = A sin (w t + j), где m — масса О.,
— частота, А — амплитуда колебаний, j — начальная фаза, t — время. Полная энергия гармонического О. Е = m w 2 А 2/2 — это сумма периодически меняющихся в противофазе кинетической Т и потенциальной U энергий; Е = Т + U не зависит от времени. Когда отклонение х нельзя считать малым, в разложении U ( x ) необходим учёт членов более высокого порядка — уравнение движения становится нелинейным, а О. называется ангармоническим.
Понятие О. применяется также к немеханическим колебательным системам в электромагнетизме, акустике, теории тяготения и т.д. Наиболее часто встречающийся электрический О. — колебательный контур, содержащий индуктивность и ёмкость. Колебания напряжённостей электрических и магнитного полей в плоской электромагнитной волне также можно описывать с помощью понятия О.
Квантовый О. В квантовой механике задача о линейном (с одной степенью свободы) гармонический О. решается с помощью Шрёдингера уравнения , в котором потенциальная энергия полагается равной U = kx 2/2. При этом оказывается, что решение существует лишь для дискретного набора значений энергии
, n = 0, 1, 2, …, где
— Планка постоянная . Важной особенностью энергетического спектра О. является то, что уровни энергии E n расположены на равных расстояниях. Т. к. отбора правила разрешают в данном случае переходы только между соседними уровнями, то, хотя квантовый О. имеет набор собственных частот w n = E n /
, излучение его происходит на одной частоте w, совпадающей с классической:
. В отличие от классического О., наименьшее возможное значение энергии (при n = 0) квантового О. равно не нулю, а
w /2 ( нулевая энергия ).
Понятие О. играет важную роль в теории твёрдого тела, в теории электромагнитного излучения, в теории колебательных спектров молекул.
Лит.: Ландау Л. Д., Лившиц Е. М., Механика. Электродинамика, М., 1969 (Краткий курс теоретической физики, кн. 1), гл. 5; их же, Теория поля, 5 изд., М., 1967 (Теоретическая физика, т. 2); их же, Квантовая механика, М., 1963 (Теоретическая физика, т. 3); Леонтович М. А., Статистическая физика, М. — Л., 1944.
Читать дальшеИнтервал:
Закладка: