БСЭ БСЭ - Большая Советская Энциклопедия (ПИ)
- Название:Большая Советская Энциклопедия (ПИ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ПИ) краткое содержание
Большая Советская Энциклопедия (ПИ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Лит.: Есин О. А., Гельд П. В., Физическая химия пирометаллургических процессов, 2 изд., ч. 1—2, Свердловск, 1962— 1966; Вольский А. Н., Сергиевская Е. М., Теория металлургических процессов, М., 1968; Зеликман А. Н., Меерсон Г. А., Металлургия редких металлов, М., 1973; Ванюков А. В., Зайцев В. Я., Теория пирометаллургических процессов, М., 1973.
Н. В. Гудима.
Пирометрия
Пирометри'я(от греч. pýr — огонь и ... метрия ) , группа методов измерения температуры. Раньше к П. относили все методы измерения температуры, превышающей предельную для ртутных термометров ; с 60-х гг. 20 в. к П. всё чаще относят лишь оптические методы, в частности основанные на применении пирометров, и не включают в неё методы, в которых применяются термометры сопротивления, термоэлектрические термометры с термопарами, и ряд др. методов (см. Термометрия ) . Почти все оптические методы основаны на измерении интенсивности теплового излучения (иногда — поглощения) тел. Интенсивность теплового излучения сильно зависит от температуры Т тел и очень резко убывает с её уменьшением. Поэтому методы П. применяют для измерения относительно высоких температур (например, серийным радиационным пирометром от 200 °С и выше). При Т £ 1000 °С методы П. играют в целом второстепенную роль, но при Т > 1000 °С они становятся главными, а при Т > 3000 °С — практически единственными методами измерения Т. Методами П. в промышленных и лабораторных условиях определяют температуру в печах и др. нагревательных установках, температуру расплавленных металлов и изделий из них (проката и т.п.), температуру пламён, нагретых газов, плазмы. Методы П. не требуют контакта датчика измерительного прибора с телом, температура которого измеряется, и поэтому могут применяться для измерения очень высоких температур. Основное условие применимости методов П.— излучение тела должно быть чисто тепловым, т. е. оно должно подчиняться Кирхгофа закону излучения . Твёрдые тела и жидкости при высоких температурах обычно удовлетворяют этому требованию, в случае же газов и плазмы необходима специальная проверка для каждого нового объекта или новых физических условий. Так, излучение однородного слоя плазмы подчиняется закону Кирхгофа, если распределения молекул, атомов, ионов и электронов плазмы по скоростям соответствуют Максвелла распределению , заселённости возбуждённых уровней энергии соответствуют закону Больцмана (см. Больцмана статистика ), а диссоциация и ионизация определяются: действующих масс законом, причём во все эти соотношения входит одно и то же значение Т. Такое состояние плазмы называется термически равновесным. Интенсивность излучения однородной равновесной плазмы и в линейчатом, и в сплошном спектрах однозначно определяется её химическим составом, давлением, атомными константами и равновесной температурой. Если плазма неоднородна, то даже при повсеместном выполнении условий термического равновесия её излучение не подчиняется закону Кирхгофа. В этом случае методы П. применимы лишь к источникам света, обладающим осевой симметрией.
Измерения наиболее просты для твёрдых тел и жидкостей, спектр излучения которых чисто сплошной. В этом случае измерения температуры осуществляют пирометрами, действие которых основано на законах излучения абсолютно чёрного тела. Обычно поверхности исследуемого тела придают форму полости, чтобы коэффициент поглощения был близок к единице (оптические свойства такого тела близки к свойствам абсолютно чёрного тела).
Наиболее универсальны методы П., основанные на измерении интенсивностей спектральных линий. Они обеспечивают максимальную точность, если известны абсолютная вероятность соответствующего перехода и концентрация атомов данного сорта. Если же концентрация атомов не известна с достаточной точностью, применяют метод относительных интенсивностей, в котором температуру вычисляют по отношению интенсивностей двух (или нескольких) спектральных линий. Варианты этих методов разработаны для измерения температуры как оптически тонких слоев плазмы, так и оптически толстых.
В др. группе методов П. температура определяется по форме или ширине спектральных линий, которые зависят от температуры либо непосредственно благодаря Доплера эффекту , либо косвенно — благодаря Штарка эффекту и зависимости плотности плазмы от температуры. В некоторых методах температура определяется по абсолютной или относительной интенсивности сплошного спектра («континуума»). Особое значение имеют методы определения температуры по спектру рассеянного плазмой излучения лазера, позволяющие исследовать неоднородную плазму. К недостаткам методов П. следует отнести трудоёмкость измерений, сложность интерпретации результатов, невысокую точность (например, погрешности измерений температуры плазмы в лучших случаях оказываются не ниже 3—10%).
Применение методов П. для исследования неравновесной плазмы даёт ценную информацию о её состоянии, хотя понятие температуры в этом случае неприменимо.
Лит.: Оптическая пирометрия плазмы. Сб. статей, [пер. с англ.], под ред. Н. Н. Соболева, М., 1960; Грим Г., Спектроскопия плазмы, пер. с англ., М., 1969; Методы исследования плазмы (Спектроскопия, лазеры, зонды), пер. с англ., под ред. С. Ю. Лукьянова, М., 1971.
В. Н. Колесников.
Пирометры
Пиро'метры(от греч. pýr — огонь и ...метр ) , приборы для измерения температуры непрозрачных тел по их излучению в оптической диапазоне спектра. Тело, температуру которого определяют при помощи П., должно находиться в тепловом равновесии и обладать коэффициентом поглощения, близким к единице (см. Пирометрия ) . Распространены яркостные, цветовые и радиационные П. Основным типом является яркостный П., обеспечивающий наибольшую точность измерений температуры в диапазоне 10 3 — 10 4 К . В простейшем визуальном яркостном П. с исчезающей нитью ( рис. 1 ) объектив фокусирует изображение исследуемого тела на плоскость, в которой расположена нить (ленточка) эталонной лампы накаливания. Через окуляр и красный фильтр, позволяющий выделять узкую спектральную область около длины волны l э= 0,65 мкм, нить рассматривают на фоне изображения тела и, изменяя ток накала нити, добиваются выравнивания яркостей нити и тела (нить в этот момент становится неразличимой). Шкала прибора, регистрирующего ток накала, прокалибрована обычно в °С или К, и в момент выравнивания яркостей прибор показывает так называемую яркостную температуру ( T b ) тела. Истинная температура тела Т определяется на основе законов теплового излучения Кирхгофа и Планка по формуле:
Читать дальшеИнтервал:
Закладка: