БСЭ БСЭ - Большая Советская Энциклопедия (ПО)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (ПО) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (ПО)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (ПО) краткое содержание

Большая Советская Энциклопедия (ПО) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (ПО) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (ПО) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С начала 20 в. в П. т. появляется новое направление, в котором исследуется поверхность «в целом» по данным свойствам окрестностей её точек. Например, Л. Г. Шнирельманом и Л. А. Люстерником было доказано существование трёх замкнутых геодезических на регулярных замкнутых поверхностях, гомеоморфных сфере. Продолжение гладких поверхностей иногда приводит к появлению на них особенностей. Например, всякая развёртывающаяся поверхность, не являющаяся цилиндрической, при продолжении доходит до ребра (или острия в случае конуса). Рассмотрение поверхностей во всём их протяжении и с особенностями (т. е. отказ от требований дифференцируемости) потребовало изобретения принципиально новых методов исследования поверхностей и привлечения методов из других разделов математики. Развитие П. т. в этом направлении привело к созданию содержательных разделов геометрии. Так, например, глубокие и принципиально новые результаты были получены А. Д. Александровым и А. В. Погореловым в теории выпуклых поверхностей. Александровым был предложен новый метод исследования выпуклых поверхностей, основанный на приближении выпуклых поверхностей выпуклыми многогранниками.

Рассмотренные свойства поверхностей не меняются при любых изометрических преобразованиях всего пространства, т. е. они относятся к т. н. метрической П. т. Изучают также свойства поверхностей, инвариантные по отношению к какой-либо другой группе преобразований пространства, например группе аффинных или проективных преобразований. Аффинная П. т. рассматривает свойства поверхностей, неизменные при эквиаффинных преобразованиях (аффинных преобразованиях, сохраняющих объём). Проективная П. т. рассматривает проективно-инвариантные свойства поверхностей.

Лит.: Рашевский П. К., Курс дифференциальной геометрии, 4 изд., М., 1956; Норден А. П., Теория поверхностей, М., 1956; Погорелов А. В., Дифференциальная геометрия, 5 изд., М., 1969; Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1—2, М. — Л., 1947—48; Бляшке В., Дифференциальная геометрия и геометрические основы теории относительности Эйнштейна, пер. с нем., т. 1, М. — Л., 1935; Александров А. Д., Внутренняя геометрия выпуклых поверхностей, М. — Л., 1948; Погорелов А. В., Внешняя геометрия выпуклых поверхностей, М., 1969; Фиников С. П., Проективно-дифференциальная геометрия, М. — Л., 1937; Широков П. А., Широков А. П., Аффинная дифференциальная геометрия, М., 1959; Blaschke W., Vorlesungen Über Differentialgeometrie, Bd 2, В., 1923; Biarichi L., Lezioni di geometria differenziale, 3 éd., t. 1—2, Bologna, 1937; Darboux G., Leçons sur la théorie générale des surfaces, 2 éd., t. 1—4, P., 1924—25.

Э. Г. Позняк.

Рис 1 к ст Поверхностей теория Рис 2 к ст Поверхностей теория Рис 3 к - фото 19

Рис. 1 к ст. Поверхностей теория.

Рис 2 к ст Поверхностей теория Рис 3 к ст Поверхностей теория - фото 20

Рис. 2 к ст. Поверхностей теория.

Рис 3 к ст Поверхностей теория Поверхности вращения Поверхности - фото 21

Рис. 3 к ст. Поверхностей теория.

Поверхности вращения

Пове'рхности враще'ния, поверхности, образуемые вращением плоской кривой вокруг прямой (оси П. в.), расположенной в плоскости этой линии. Примером П. в. может служить сфера (которую можно рассматривать как поверхность, образованную вращением полуокружности вокруг её диаметра). Линии пересечения П. в. с плоскостями, проходящими через её ось, называется меридианами; линии пересечения П. в. с плоскостями, перпендикулярными оси, — параллелями. Если по оси П. в. направить ось Oz прямоугольной системы координат Oxyz, то параметрическое уравнения П. в. можно записать следующим образом:

x = f ( u ) cosu, y = f ( u ) sinu, z = u.

[здесь f ( u ) — функция, определяющая форму меридиана, а u — угол поворота плоскости меридиана].

Поверхности второго порядка

Пове'рхности второ'го поря'дка, поверхности, декартовы прямоугольные координаты точек которых удовлетворяют алгебраическому уравнению 2-й степени:

a 11 x 2+ a 22 y 2+ a 33 z 2+ 2 a 12 xy + 2 a 23 yz + 2 a 13 xz + 2 a 14 x + 2 a 24 y + 2 a 34 z + a 44= 0 (*)

Уравнение (*) может и не определять действительного геометрического образа, но для сохранения общности в таких случаях говорят, что оно определяет мнимую П. в. п. В зависимости от значений коэффициентов общего уравнения (*) оно может быть преобразовано с помощью параллельного переноса и поворота системы координат к одному из 17 приведённых ниже канонических видов, каждому из которых соответствует определённый класс П. в. п. Среди них выделяют пять основных типов поверхностей. Именно,

1) эллипсоиды

Большая Советская Энциклопедия ПО - изображение 22 — эллипсоиды,

Большая Советская Энциклопедия ПО - изображение 23 — мнимые эллипсоиды;

2) гиперболоиды:

Большая Советская Энциклопедия ПО - изображение 24 — однополостные гиперболоиды,

Большая Советская Энциклопедия ПО - изображение 25 — двуполостные гиперболоиды;

3) параболоиды ( p > 0, q > 0):

Большая Советская Энциклопедия ПО - изображение 26 — эллиптические параболоиды,

Большая Советская Энциклопедия ПО - изображение 27 — гиперболические параболоиды;

4) конусы второго порядка:

Большая Советская Энциклопедия ПО - изображение 28 — конусы,

Большая Советская Энциклопедия ПО - изображение 29 — мнимые конусы;

5) цилиндры второго порядка:

Большая Советская Энциклопедия ПО - изображение 30 — эллиптические цилиндры,

Большая Советская Энциклопедия ПО - изображение 31 — мнимые эллиптические цилиндры,

Большая Советская Энциклопедия ПО - изображение 32 — гиперболические цилиндры,

Большая Советская Энциклопедия ПО - изображение 33 — параболические цилиндры.

Перечисленные П. в. п. относятся к т. н. нераспадающимся П. в. п.; распадающиеся П. в. п.:

Большая Советская Энциклопедия ПО - изображение 34 — пары пересекающихся плоскостей,

Большая Советская Энциклопедия ПО - изображение 35 пары мнимых пересекающихся плоскостей,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (ПО) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (ПО), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x