БСЭ БСЭ - Большая Советская Энциклопедия (СХ)
- Название:Большая Советская Энциклопедия (СХ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (СХ) краткое содержание
Большая Советская Энциклопедия (СХ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В математическом анализе используются различные виды С. последовательности функций { f n ( x )} к функции f ( x ) (на некотором множестве М). Если для каждой точки X 0 (из М ) , то говорят о С. в каждой точке [если это равенство не имеет места лишь для точек, образующих множество меры нуль (см. Мера множества ) , то говорят о С. почти всюду]. Несмотря на свою естественность, понятие С. в каждой точке обладает многими нежелательными особенностями [например, последовательность непрерывных функций может сходиться в каждой точке к разрывной функции; из С. функций f n ( x ) к f ( x ) в каждой точке не следует, вообще говоря, С. интегралов от функций f n ( x ) к интегралу от f ( x ) и т. д.]. В связи с этим было введено понятие равномерной С., свободное от этих недостатков: последовательность { f n ( x )} называется равномерно сходящейся к f ( x ) на множестве М, если
Этот вид С. соответствует определению расстояния между функциями f ( x ) и ( ( х ) по формуле
Д. Ф. Егоров доказал, что если последовательность измеримых функций сходится почти всюду на множестве М, то из М можно так удалить часть сколь угодно малой меры, чтобы на оставшейся части имела место равномерная С.
В теории интегральных уравнений, ортогональных рядов и т. д. широко применяется понятие средней квадратической С.: последовательность { f n ( x )} сходится на отрезке [ a, b ] в среднем квадратическом к f ( x ) , если
.
Более общо, последовательность { f n ( x )} сходится в среднем с показателем р к f ( x ) , если
.
Эта С. соответствует заданию расстояния между функциями по формуле
.
Из равномерной С. на конечном отрезке вытекает С. в среднем с любым показателем р. Последовательность частичных сумм разложения функции j(х) с интегрируемым квадратом по нормированной ортогональной системе функций может расходиться в каждой точке, но такая последовательность всегда сходится к j(х) в среднем квадратическом. Рассматриваются также другие виды С. Например, С. по мере: для любого e > 0 мера множества тех точек, для которых , стремится к нулю с возрастанием n', слабая С.:
для любой функции j(x) с интегрируемым квадратом (например, последовательность функций sinx, sin2x,..., sinnx, ... слабо сходится к нулю на отрезке [—p, p], так как для любой функции j(х) с интегрируемым квадратом коэффициенты ряда Фурье стремятся к нулю).
Указанные выше и многие другие понятия С. последовательности функций систематически изучаются в функциональном анализе, где рассматриваются различные линейные пространства с заданной нормой (расстоянием до нуля) — так называемые банаховы пространства. В таких пространствах можно ввести понятия С. функционалов, операторов и т. д., определяя для них соответствующим образом норму. Наряду со С. по норме (так называемой сильной С.), в банаховых пространствах рассматривается слабая С., определяемая условием для всех линейных функционалов; введённая выше слабая С. функций соответствует рассмотрению нормы
. В современной математике рассматривается также С. по частично упорядоченным множествам (см. Упорядоченные и частично упорядоченные множества ) . В теории вероятностей для последовательности случайных величин употребляются понятия С. с вероятностью 1 и С. по вероятности.
Ещё математики древности (Евклид, Архимед) по существу употребляли бесконечные ряды для нахождения площадей и объёмов. Доказательством С. рядов им служили вполне строгие рассуждения по схеме исчерпывания метода. Термин «С.» в применении к рядам был введён в 1668 Дж. Грегори при исследовании некоторых способов вычисления площади круга и гиперболического сектора. Математики 17 в. обычно имели ясное представление о С. употребляемых ими рядов, хотя и не проводили строгих с современной точки зрения доказательств С. В 18 в. широко распространилось употребление в анализе заведомо расходящихся рядов (в частности, их широко применял Л. Эйлер ) . Это, с одной стороны, привело впоследствии ко многим недоразумениям и ошибкам, устранённым лишь с развитием отчётливой теории С., а с другой — предвосхитило современную теорию суммирования расходящихся рядов. Строгие методы исследования С. рядов были разработаны в 19 в. (О. Коши, Н. Абель, К . Вейерштрасс, Б . Больцано и др.). Понятие равномерной С. было введено Дж. Стоксом. Дальнейшие расширения понятия С. были связаны с развитием теории функций, функционального анализа и топологии.
Лит.: Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., т. 1—2, М., 1971—73; Кудрявцев Л. Д., Математический анализ, 2 изд., т. 1—2, М., 1970; Никольский С. М., Курс математического анализа, т. 1—2, М., 1973.
Сходница
Схо'дница,посёлок городского типа в Львовской области УССР. Подчинён Бориславскому горсовету. Расположен в 9 км от ж.-д. станции Борислав. Нефтепромысел, лесозавод и др. предприятия. Пансионаты: «Карпаты», «Гуцулка».
Сходня
Схо'дня,город (с 1961) в Химкинском районе Московской области РСФСР, на р. Сходня (приток р. Москвы). Ж.-д. станция в 30 км к С.-З. от Москвы. 19 тыс. жителей (1974). Стекольный завод, мебельно-сборочный комбинат, галантерейная и трикотажная фабрики. Пушно-меховой техникум. Турбаза.
Читать дальшеИнтервал:
Закладка: