Эдвард Торп - Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок
- Название:Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок
- Автор:
- Жанр:
- Издательство:Литагент Аттикус
- Год:2017
- ISBN:978-5-389-14128-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эдвард Торп - Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок краткое содержание
«Воспоминания Эда Торпа читаются как триллер. В них замешаны потайные носимые компьютеры, от которых не отказался бы и Джейм с Бонд, зловещие персонажи, великие ученые и попытки отравления (не говоря уже о диверсии, после которой Эд должен был “попасть в аварию” посреди пустыни). Эта книга рисует портрет аккуратного, серьезного, организованного человека, посвятившего себя поискам жизни, знаний, финансовой безопасности и, не в последнюю очередь, удовольствий». (Нассим Талеб) «Я приглашаю вас принять участие в моей одиссее по мирам науки, азартных игр и рынков ценных бумаг. Вы узнаете, как мне удалось преодолеть всевозможные опасности и добиться успеха в Лас-Вегасе, на Уолл-стрит и в моей собственной жизни. В этом путешествии вы встретитесь с интересными людьми, от считающих карты игроков в блэкджек до специалистов по инвестициям, от кинозвезд до нобелевских лауреатов. Вы познакомитесь с опционами и другими производными финансовыми инструментами, а также с хедж-фондами и узнаете, как простая инвестиционная стратегия позволяет в долговременной перспективе обыграть всех, даже самых опытных, инвесторов». (Эдвард Торп)
Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вернувшись из путешествия, я снова взялся за работу и учебу. На первом курсе магистратуры, в 1953/54 учебном году, я подал заявку на стипендию для изучения физики в Колумбийском университете [35] Колумбийский университет – частный исследовательский университет в Нью-Йорке, также один из самых известных и престижных вузов США. (прим. переводчика)
и получил ее. Мне нужно было только собрать достаточно денег для жизни в Нью-Йорке. Этого мне сделать не удалось, и я вынужден был отказаться от стипендии и остаться в УКЛА. Как-то раз на следующий год, когда я писал свою диссертацию, одним воскресным днем в перерыве между учебой я пил чай с несколькими другими студентами в столовой общежития. Кто-то, съездивший перед этим в Лас-Вегас, рассказывал, что обыграть казино невозможно. Все присутствующие были с этим согласны. Таково же было и общее мнение всего мира, основанное на горьком опыте многих поколений игроков.
Система мартингала, или удвоения ставок, – это одна из многочисленных систем, разработанных игроками в надежде на выигрыш. Она часто использовалась в игре в рулетку в случаях, в которых выигрыш равен ставке игрока, например, для ставок на «красное» и «черное». В стандартном американском рулеточном колесе [36] На европейском колесе имеется всего одна зеленая ячейка, а правила игры более благоприятны для игроков. Так, если выпадает зеро, игрок, поставивший на красное или черное, теряет только половину своей ставки. (прим. автора)
есть восемнадцать красных чисел, восемнадцать черных чисел и два зеленых числа [37] В зеленый цвет окрашены ячейки «зеро», при выигрыше которых крупье забирает все ставки. В отличие от европейского варианта рулетки, в американском таких ячеек не одна, а две. (прим. переводчика)
– всего тридцать восемь ячеек. При выплате, равной размеру ставки, для каждых тридцати восьми розыгрышей можно ожидать, что ставка на красное или на черное выиграет в среднем восемнадцать раз и проиграет двадцать раз, что дает суммарный проигрыш в две ставки. Система мартингала пытается преодолеть невыгодность этого положения следующим образом. Предположим, что мы начинаем игру со ставки 1 доллар, например, на красное. После каждого проигрыша следует ставить – по-прежнему на красное – ставку, вдвое большую предыдущей. Рано или поздно наша ставка выиграет – красное обязательно когда-нибудь выпадет, – и этот выигрыш компенсирует все предыдущие проигрыши и принесет 1 доллар прибыли. После этого следует снова сделать ставку 1 доллар и повторить всю процедуру сначала; каждый выигрыш приносит игроку прибыль 1 доллар. Проблема заключается в том, что после большого числа таких удвоений игрок должен делать слишком большие ставки, которые могут превышать имеющиеся у него средства или предельный размер ставки, разрешенный в этом казино.
Бесконечное число разных последовательностей исходов азартной игры не позволяло проверить работоспособность той или иной системы ставок методом проб и ошибок. Математический анализ каждой из таких систем также казался в то время делом безнадежным, так как все время появлялись новые системы, требующие проверки. Одним из величайших достижений математики стало создание единой теоремы, доказывающей, что ни одна из таких систем не может быть успешной [38] Один из наиболее известных примеров дает теорема Пифагора в геометрии. Она утверждает, что сумма квадратов длин катетов прямоугольного треугольника равна квадрату длины его гипотенузы. Например, треугольник, длины сторон которого равны 3, 4 и 5, прямоугольный, и 32 + 42 = 52. В другом прямоугольном треугольнике 122 + 52 = 132. Таких треугольников бесконечно много, и если проверять каждый из них, мы никогда не сможем проверить все. Теорема дает общее правило для всех таких треугольников. (прим. автора)
. Эта теорема доказывала, исходя из достаточно общих предположений, что никакой метод варьирования размеров ставок не может преодолеть преимущества казино.
Припомнив возникшие у меня еще в школе идеи о предсказании физического поведения рулетки, я стал уверять прочих участников этого чаепития, что рулетку можно обыграть, несмотря на все математические доказательства обратного. Опираясь на те физические принципы, с которыми я познакомился за последние шесть лет, я объяснял, что трение постепенно замедляет катящийся по кругу шарик до тех пор, пока воздействие силы тяжести не оказывается достаточным, чтобы направить его по нисходящей спирали к центру колеса. Я утверждал, что можно вывести уравнение, которое будет предсказывать положение шарика в этом процессе. Хотя скатывающийся шарик попадает на центральный ротор, который вращается в противоположном направлении, можно использовать другое уравнение, определяющее положение ротора. Предсказательную способность таких уравнений ограничивают случайные, непредсказуемые отклонения от правильной траектории, которые математики и физики называют «шумом». Здравый смысл подсказывал, что уровень такого шума должен быть слишком высок для правильного предсказания. Я в этом сомневался и решил выяснить, как обстоит дело.
К счастью, в то время я еще не знал, что один из величайших математиков предыдущего столетия, Анри Пуанкаре, «доказал» невозможность физического предсказания поведения рулетки. Его доказательство было рациональным и предполагало наличие лишь умеренного и правдоподобного элемента случайности в предсказании места остановки шарика.
К этому моменту я уже завершил учебную программу аспирантуры по физике и сдал письменные экзамены. Последний этап работы, моя диссертация (самостоятельное научное исследование) по строению оболочек атомных ядер, над которой я работал под руководством доцента Стивена Московски, был завершен наполовину. Мне оставалось только дописать эту работу и защитить ее, но для этого мне нужно было изучить математику в гораздо большем объеме – она требовалась для выполнения сложных вычислений по квантовой механике. В то время обязательный курс математики для студентов-физиков в УКЛА был очень ограничен, и мои знания в этой области были весьма поверхностными. Работа с квантовой механикой требовала глубокого знания высшей математики, и я выяснил, что для моих исследований мне нужно было изучить такое количество материала, что с тем же успехом можно было получить кандидатскую степень по математике. Мне показалось, что я смогу защититься по математике за то же время, если не быстрее, чем по физике. Эта возможность выглядела особенно соблазнительно с учетом того, что учившиеся тогда в УКЛА аспиранты-физики часто тратили на свои диссертации лет по десять, а то и больше.
Читать дальшеИнтервал:
Закладка: