Питер Макоуэн - Вычислительное мышление: Метод решения сложных задач
- Название:Вычислительное мышление: Метод решения сложных задач
- Автор:
- Жанр:
- Издательство:Альпина Паблишер
- Год:2017
- Город:Москва
- ISBN:978-5-9614-5020-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Питер Макоуэн - Вычислительное мышление: Метод решения сложных задач краткое содержание
Если вы хотите узнать больше о вычислительном мышлении, ищете новые способы стать эффективнее и любите математические игры и головоломки, эта книга для вас. В то же время вы научитесь навыкам, необходимым для программирования и создания новых технологий. Даже если вы не планируете писать программы и изобретать, вы сможете применять навыки вычислительного мышления, чтобы справиться с любыми жизненными проблемами.
Вычислительное мышление: Метод решения сложных задач - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Закон Вебера–Фехнера имеет следующую формулировку: чем сильнее исходный стимул, тем больше должны быть изменения, чтобы мы их заметили. Слова всегда полезны, и Вебер описал свои открытия, а Фехнер на основе данных экспериментов нашел для них удивительно простое математическое описание.
Условимся, что сила стимула — S. Например, в описанном случае это будет основной вес предмета в руке. Предположим, что мы заметим изменения, только если повысим интенсивность стимула на dS(помните, что dS— это добавленный и воспринятый вес). Согласно закону Вебера–Фехнера, если разделить добавленный вес на основной вес, мы всегда получим одно и то же число
dS/S= k,
где k— константа. Это число, получаемое из экспериментальных данных.
Если измерить константу kдля конкретного веса (проведя измерения и выполнив деление), то можно проверить, сохранится ли она для других весов. И, что еще лучше, можно высказать предположения и проверить их. Представьте, что мы делаем это для низкого основного веса 10 г, при котором чувствуется, когда он повышается всего на 1 г. Закон Вебера говорит, что 1 г / 10 г — это константа. В данном случае — 0,1. Используя эту экспериментальную константу 0,1, мы можем предсказать, какой вес надо добавить ( dS), если основной равен 1 кг (1000 г). Закон утверждает, что ( dS/ 1000) равно 0,1. Если подставить в формулу новое значение, она будет выглядеть так:
dS= 0 ,1 ×1000 = 100 г.
С помощью математических вычислений мы сделали предсказание о соотношении телесного и умственного восприятия, которое теперь можно протестировать. Если бы мы использовали только словесное описание, то не смогли бы получить такую возможность для тестирования.
Исследователи в области психофизики выяснили экспериментальным путем, что если не ударяться в крайности, то закон Вебера хорошо позволяет предсказать, как интенсивность раздражителя соотносится с интенсивностью восприятия. Закон справедлив для веса, яркости света, громкости звука и даже длины линий. У него много применений в вычислительных системах — например, в компьютерной графике, при демонстрации изображений и обработке звука. Еще его используют, когда надо решить, что именно стоит демонстрировать на маленьком экране. Зачем показывать деталь, которую никто не заметит из-за бросающихся в глаза элементов вокруг нее? Подобным образом, если вы хотите сжать звуковой файл и сэкономить место на его хранении, можно использовать алгоритмы на основе закона Вебера, чтобы понять, какие элементы звука можно удалить и этого никто не заметит. Например, тихие звуки на фоне очень громких.
Закон Вебера–Фехнера можно наблюдать повсюду вокруг нас, хотя, вероятно, вы этого не замечали. Спросите себя: почему вы не видите звезд днем? Они светят так же ярко, как и ночью. Почему вы не замечаете тиканья часов в шумное дневное время, но всегда слышите его в ночной тишине? Все это закон Вебера–Фехнера, который работает изо всех сил, помогая нам предварительно обрабатывать и искусно сжимать данные, поступающие в мозг. Мозг делает это, чтобы мы могли справиться с гораздо большим объемом вводных данных, чем если бы мы, как механический сенсор, просто измеряли непосредственно стимулы.
В ходе эволюции были найдены талантливые решения сложных технических задач и проблем в области обработки информации (но ни разу не патентовались). В настоящее время активно развивается биомиметика— область компьютерных наук, которая занимается изучением принципов функционирования биологических систем, чтобы, поняв их, внедрить в компьютерные системы. Таким образом можно проверить, добились ли мы желаемого, то есть обладает ли компьютерная система свойствами системы природной. А это означает, что мы можем прогнозировать, и кроме того получить очень полезные алгоритмы для усовершенствованных компьютерных программ. Естественные науки, компьютерные науки и информатика идут рука об руку.
Специалисты по компьютерным наукам черпают вдохновение в природе и создают алгоритмы, которые помогают нам выполнять сложные задачи. В процессе естественного отбора появились умные инженерные решения, которые позволили живым существам выжить на нашей планете. Так почему бы их не скопировать? В конце концов, крылья птиц подсказали первым авиаторам идею аэроплана. Так зачем на этом останавливаться? В ходе эволюции были не только решены инженерные проблемы, но и нашлись способы обработки информации для решения очень сложных задач.
Ученые-компьютерщики изучили, как работает наша иммунная системасо сложной системой антител, которые позволяют справиться с болезнью. Антитела подбираются так, чтобы их форма соответствовала форме белковых молекул на поверхности микробов и других угрожающих здоровью организмов. Систему антител можно сымитировать на компьютере и ввести в алгоритм набор различных цифровых шаблонов. Так мы выявим шаблоны в данных, будь то вербальный контент, спам-сообщения или подозрительный трафик в сети.
Компьютерная симуляция путей муравьев-фуражиров, доставляющих добычу в муравейник, используется, чтобы помочь роботам разработать хорошие решения по улучшению своей навигационной схемы. Изучение системы зрительного внимания,которая показывает, какие участки изображения привлекают наш взгляд, и создание ее модели стали возможными благодаря пониманию принципов работы зрительной зоны коры головного мозга, отвечающей за обработку визуальной информации. С помощью этой модели роботы начинают понимать, что происходит перед ними, а специалисты по рекламе улучшают дизайн своих макетов.
Постоянное продвижение в понимании принципов работы биологических систем позволит компьютерам работать по-новому, в основе схем будет лежать упрощенный вариант систем, функционирующих в природе.
Предубеждения мозга
Уличные фокусники часто используют этот психологический трюк. Попросите друга быстро загадать двузначное число от 1 до 100, из нечетных и обязательно разных цифр. Сосредоточьтесь и дайте ответ… 37!
Во-первых, этот фокус получается не всегда! Конечно, в телепередачах показывают только случаи, когда он удается. Фокус основан на вероятности и довольно хитром способе ограничить выбор зрителя. Если он не сработал — о чем разговор! Это же чтение мыслей — дело сложное. Просто вы не настроились как следует.
Вы сообщаете добровольцу, что он может выбрать любое двузначное число между 1 и 100. Значит, он запомнит, что него есть выбор в промежутке от 1 до 100. Это так называемый эффект первичностипри запоминании: мы лучше запоминаем то, что было в начале.
Читать дальшеИнтервал:
Закладка: