Александр Чесалов - Глоссариум по искусственному интеллекту и информационным технологиям
- Название:Глоссариум по искусственному интеллекту и информационным технологиям
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005589576
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Чесалов - Глоссариум по искусственному интеллекту и информационным технологиям краткое содержание
Глоссариум по искусственному интеллекту и информационным технологиям - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Генеративные модели (Generative model) – это семейство архитектур ИИ, целью которых является создание образцов данных с нуля. Они достигают этого, фиксируя распределение данных того типа вещей, которые мы хотим генерировать. На практике модель может создать (сгенерировать) новые примеры из обучающего набора данных. Например, генеративная модель может создавать стихи после обучения на наборе данных сборника Пушкина.
Генеративный ИИ (Generative AI) – это метод ИИ, который изучает представление артефактов из данных и использует его для создания совершенно новых, полностью оригинальных артефактов, сохраняющих сходство с исходными данными.
Генерация речи (Speech generation) – это задача создания речи из какой-либо другой модальности, такой как текст, движения губ и т. д. Также под синтезом речи понимается компьютерное моделирование человеческой речи. Оно используется для преобразования письменной информации в слуховую там, где это более удобно, особенно для мобильных приложений, таких как голосовая электронная почта и единая система обмена сообщениями. Синтез речи также используется для помощи слабовидящим, так что, например, содержимое экрана дисплея может быть автоматически прочитано вслух слепому пользователю. Синтез речи является аналогом речи или распознавания голоса.
Генетический алгоритм (Genetic Algorithm) – это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, аналогичных естественному отбору в природе. Генетический алгоритм требует генетического представления решения и функции пригодности для оценки решения.
Гетероассоциативная память (Hetero Associative memory) – это память, похожа на сеть автоассоциативной памяти, это также однослойная нейронная сеть. Однако в этой сети входной обучающий вектор и выходные целевые векторы не совпадают. Веса определяются таким образом, чтобы сеть хранила набор шаблонов. Гетероассоциативная сеть носит статический характер, следовательно, в ней не будет нелинейных операций и операций с запаздыванием. Архитектура, как показано на следующем рисунке, архитектура сети гетероассоциативной памяти имеет «n» количество входных обучающих векторов и «m» количество выходных целевых векторов.

Гибридизация человека и машины (Human-machine hybridization) – это технология, позволяющая соединить человеческое тело и технологическую систему. Текущий подход к разработке интеллектуальных систем (например, на основе технологий искусственного интеллекта) в основном ориентирован на данные. Он имеет ряд ограничений: принципиально невозможно собрать данные для моделирования сложных объектов и процессов; обучение нейронных сетей требует огромных вычислительных и энергетических ресурсов; и решения не объяснимы. Современные системы ИИ (основанные на узком ИИ) вряд ли можно считать интеллектом. Это скорее следующий уровень автоматизации человеческого труда. Перспективной концепцией, лишенной вышеуказанных ограничений, является концепция гибридного интеллекта, объединяющая сильные стороны узкого ИИ и возможности человека. Гибридные интеллектуальные системы обладают следующими ключевыми особенностями: Когнитивная интероперабельность – позволяет искусственным и естественным интеллектуальным агентам легко общаться для совместного решения проблемы; Взаимная эволюция (коэволюция) – позволяет гибридной системе развиваться, накапливать знания и формировать общую онтологию предметной области. Ядром гибридизации человеко-машинного интеллекта является функциональная совместимость биологических и технических систем на разных уровнях от физических сигналов до когнитивных моделей.
Гибридные модели (Hybrid models) – это комбинации моделей на основе данных с «классическими» моделями, а также комплексирование различных методов искусственного интеллекта.
Гибридный суперкомпьютер (Hybrid supercomputer) – это вычислительная система, объединяющая ЦП традиционной архитектуры (например, x86) и ускорители, например, на вычислительных графических процессорах.
Глубокая нейронная сеть (Deep neural network, глубинная нейронная сеть, ГНС)многослойная сеть, содержащая между входным и выходным слоями несколько (много) скрытых слоёв нейронов, что позволяет моделировать сложные нелинейные отношения. ГНС сейчас всё чаще используются для решения таких задач искусственного интеллекта, как распознавание речи, обработка текстов на естественном языке, компьютерное зрение и т.п., в том числе в робототехнике.
Глубоко разделяемая сверточная нейронная сеть (Depthwise separable convolutional neural network) – это архитектура сверточной нейронной сети, основанная на Inception (раздел с данными на GitHub), но в которой модули Inception заменены свертками, отделяемыми по глубине. Также известен как Xception.
Глубокое обучение (Deep Learning) – это разновидность машинного обучения на основе искусственных нейронных сетей, а также глубокое (глубинное) структурированное или иерархическое машинное обучение, набор алгоритмов и методов машинного обучения (machine learning) на основе различных видов представления данных. Обучение может быть контролируемым, полу контролируемым (semi-supervised) или неконтролируемым. Использование в глубоком обучении рекуррентных нейронных сетей (recurrent neural networks), позволяет эффективно решать задачи в областях компьютерного зрения, распознавания речи, обработки текстов на естественном языке, машинного перевода, биоинформатики и др.
Государство-как-Платформа (State-as-Platform) – это концепция трансформации государственного управления с использованием возможностей, которые нам дают новые технологии. Целевой функцией реализации идеи «Государство-как-Платформа» является благополучие граждан и содействие экономическому росту, основанному на внедрении технологий. В фокусе развертывания Платформы находится гражданин в условиях новой цифровой реальности. Государство должно создать условия, которые помогут человеку раскрыть свои способности, и сформировать комфортную и безопасную среду для его жизни и реализации потенциала, а также для создания и внедрения инновационных технологий.
Графический кластер (Graphics cluster) – это доминирующий высокоуровневый блок, включающий все ключевые графические составляющие.
Графический процессор (computational Graphics Processing Unit, computational GPU) – это вычислитель, многоядерный ГП, используемый в гибридных суперкомпьютерах для выполнения параллельных математических вычислений; например, один из первых образцов ГП этой категории содержит более 3 млрд транзисторов – 512 ядер CUDA и память ёмкостью до 6 Гбайт
Читать дальшеИнтервал:
Закладка: