Линдон ЛАРУШ - ВЫ НА САМОМ ДЕЛЕ ХОТЕЛИ БЫ ЗНАТЬ ВСЕ ОБ ЭКОНОМИКЕ?
- Название:ВЫ НА САМОМ ДЕЛЕ ХОТЕЛИ БЫ ЗНАТЬ ВСЕ ОБ ЭКОНОМИКЕ?
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Линдон ЛАРУШ - ВЫ НА САМОМ ДЕЛЕ ХОТЕЛИ БЫ ЗНАТЬ ВСЕ ОБ ЭКОНОМИКЕ? краткое содержание
Перевод выполнен кандидатом химических наук Петренко В.В.
Научный редактор: профессор, доктор философских наук, кандидат экономических наук Муранивский Т.В. Шиллеровский институт Украинский Университет в Москве, 1992 ("SO, YOU WISH TO LEARN ALL ABOUT ECONOMICS? A Text on Elementary Mathematical Economics" by Lyndon H. LaRouche, Jr., New Benjamin Franklin House New York, 1984)
ВЫ НА САМОМ ДЕЛЕ ХОТЕЛИ БЫ ЗНАТЬ ВСЕ ОБ ЭКОНОМИКЕ? - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Термин «онтологическая трансфинитность» появляется, в основном, из-за значительной разницы в методе, принятом Гауссом и Риманом, с одной стороны, и геттингенским профессором Феликсом Клейном (1849-1925) и др., с другой. Хотя Кляйн настаивал на том, что современное естествознание утратило те методы научной работы, которые применялись Карлом Гауссом, и приложил все усилия для возрождения этого исчезающего знания, в действительности слабые места в работе великого Давида Гильберта (1862-1943) показали, что ему не удалось постичь геометрические принципы, которые использовали Гаусс, Дирихле, Риман и др. Точно так же основополагающая работа Макса Планка (1858-1947), посвященная проблеме излучения черного тела, не сумела преодолеть препятствия на пути разработки квантовой теории из-за отказа от строгого геометрического подхода в пользу доктрин Клаузиуса, Гельмгольца, Больцмана и др. Европейские авторитеты в области математической физики второй половины XIX века, в лучшем случае, защищали работы Кеплера, Лейбница, Эйлера, Гаусса, Римана и др. от атак эмпириков и понятие «трансфинитности» в качестве математической концепции. Однако они отказывались признавать, что вещественность исходно существует в непрерывном множестве, в том смысле, в каком мы здесь описали «онтологическую трансфинитность». Таким образом, последующие поколения ученых оперировали «методологической трансфинитностью». Так возникло указанное выше различие.
Второй момент, который мы бы хотели обсудить, касается злобной кампании, развязанной против Вейерштрасса и Кантора Леопольдом Кронекером (1823-1891). Кронекер, известный, в частности, по высказыванию «Бог создал целые числа», настаивал на том, что все другие числа являются лишь умственными построениями. Разработки Паскаля по геометрическому определению различных численных рядов, а также работы Ферма, Эйлера, Дирихле и Римана по исследованию простых чисел, отражают тот факт, что все числа создаются геометрическими процессами, и условия возникновения этих чисел (в общем случае) находятся в непрерывном множестве (комплексной области). Хотя оба были учениками Дирихле, Кронекер и его друг-соперник Рихард Дедекинд (1831-1916) выступали в качестве мягкого критика и жёсткого критика в центре широкого заговора против Георга Кантора [9]. Математические идеи Кронекерга были смесью философии Декарта и британского каббализма XVII века. Как и у Декарта (1596-1650), вселенная Кронекера была ограничена объектами в эвклидовом пространстве, которые можно сосчитать. Это особая точка зрения, питающая такие радикально-номиналистические крайности как «Принципы Математики» Бертрана Рассела (1872-1970) и А.Н.Уайтхеда (1861-1947).
Из рукописных документов, хранящихся в архивах, так же, как и из опубликованных первоисточников, следует, что Кантора атаковали с трех направлений. С французской стороны это являлось наследием действий Лапласа и Коши против ведущих фигур Политехнической школы (Фурье, Лежандра и других). Существовал также элемент религиозного преследования настоящая инквизиция против математики Кантора членами религиозных орденов, что вынудило ученого обратиться к папе римскому с просьбой прекратить подобные действия. И в-третьих, нападки исходили из Британии. Бертран Рассел в течение некоторого времени играл ведущую роль в этом действии. Это было продолжением британской кампании, явно направленной против Гаусса и Римана; в основном этим же целям служили и работы Максвелла, что явствует из его собственных заявлений. Безграмотные нападки Рассела на квалификационную диссертацию Римана 1854 года хорошо отражают то усердие, с которым Рассел прилагал все усилия для подрыва репутации Гаусса, Римана, Кантора и Клейна. Кроме того, что Рассел прожил достаточно долго, чтобы стать самой злой персоной XX века, именно он был в центре усилий, направленных на разрушение канторовского понятия «трансфинитности», и именно он поддержал лживое утверждение о том, что современная теория множеств выросла из работ Кантора.
Этот поразительный заговор против Кантора приведен здесь для иллюстрации силы и размаха усилий, предпринятых в XIX веке для искоренения методологического (геометрического) наследства Николая Кузанского, да Винчи, Кеплера, Лейбница, Эйлера, Монжа, Гаусса, Римана и др. Основные исходные положения и связанные с ними ошибки, мешающие современным научным работам, являются, главным образом, результатом происходивших в XIX веке преследований, для которых случай с Кантором являлся типичным. Концепции, уже подтвержденные неоспоримыми аргументами с позиций работ от Николая Кузанского до середины 1850-х годов, также кажутся весьма странными заблуждениями для современных специалистов, которым не хватает исторического образования, особенно в области прошедших жестоких споров, разразившихся после Венского конгресса 1815 г. К счастью, благодаря усилиям сотен исследователей, в течение более чем десятилетия прочесывающих архивные материалы десятков стран, большая доля правды об истории современной науки увидела свет. Оказалось, что многие из этих материалов имеют прямое отношение к принципиальным положениям экономической науки. И как же может быть иначе, если центральным вопросом экономической науки является технология ?
Выделим из вышеприведенного краткого обзора основных свойств математической физики те, которые напрямую касаются экономической науки.
Реальная вселенная в целом является негэнтропийной, что было показано как Гауссом, так и тщательным рассмотрением законов астрономии Кеплера.
Онтологически реальная вселенная расположена в непрерывном множестве, которое описывается математически при помощи синтетической геометрии, основанной на самоподобном коническо-спиральном действии.
Тот тип чисел, которые непосредственно соответствуют реальности физического мира, является формой комплексных чисел, задаваемых построениями синтетической геометрии в непрерывном множестве (комплексной области). Натуральные числа являются проекциями комплексных чисел на видимый мир.
Познание физического мира становится возможным и вытекает из того, что Риман определил как уникальный эксперимент.
Следовательно, так называемые законы термодинамики не соответствуют физической действительности и являются чужеродными утверждениями, произвольно внесенными в науку. Несомненно, что любая термодинамика, которой требуются эти три мнимых закона, является энтропийной, что противоречит доказанному основополагающему строению вселенной. Точно так же «работа» и «энергия», определенные должным образом, соответствуют реальностям, существующим в непрерывном множестве, и являются производными комплексных функций, не сводимых к простым скалярным величинам. «Энергия» и «работа» не являются «вещами», это процессы.
Читать дальшеИнтервал:
Закладка: