Ренна Шессо - Математика для мистиков. Тайны сакральной геометрии

Тут можно читать онлайн Ренна Шессо - Математика для мистиков. Тайны сакральной геометрии - бесплатно полную версию книги (целиком) без сокращений. Жанр: Эзотерика, издательство Издательская группа «Весь», год 2010. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика для мистиков. Тайны сакральной геометрии
  • Автор:
  • Жанр:
  • Издательство:
    Издательская группа «Весь»
  • Год:
    2010
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9573-1799-9; 978-1-57863-383-8 (англ.)
  • Рейтинг:
    4.78/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ренна Шессо - Математика для мистиков. Тайны сакральной геометрии краткое содержание

Математика для мистиков. Тайны сакральной геометрии - описание и краткое содержание, автор Ренна Шессо, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Лунные лабиринты, сакральная геометрия, тайна золотого сечения, магические квадраты… Эта книга читается как захватывающий бестселлер… по математике! Причем, математика, геометрия преподносятся не как скучный школьный предмет, а как невероятная история познания мира и человека.

Вы узнаете о том, как люди научились считать, как появилась система измерений, что означают названия дней недели и почему их количество равняется семи. Познакомитесь с учением о магических квадратах (квадрат Сатурна, Дюрера и др.) и способах их использования — например, для концентрации внимания. Также вы сможете освоить медитацию на числа и геометрические фигуры.

Автор книги уверена: если мы перестанем паниковать при упоминании математики и откроем свой ум для постижения ее тайн, то обнаружим, что наука формул и цифр является настолько же элементарной, как и биение сердца.

Входя под своды древних соборов или любуясь полотнами эпохи Возрождения, не следует забывать и о числах! Количество изображенных персон, окон, число ступеней, углов купелей, также как и число спиц колеса на какой-либо картине, — все это ключ к тайному смыслу, к постижению глубокого значения шедевров культуры. В средневековье числа рассматривались как выражение Божественного замысла, поэтому знание тайны чисел вело к познанию Вселенной.

Увы, эти знания у нас были преданы почти полному забвению.

Хайо Банцхоф «Символика и значение чисел»

Будучи человеческими существами, мы не просто немного любопытны — мы настойчиво любознательны. Мы хотим понимать! Мы хотим знать! Мы хотим найти основополагающий порядок в нашей Вселенной! Мы хотим что-то значить! Мы хотим считать!

Эй! Считать?! Нет! Это же математика! Как много иронии в том, что сегодня в XXI веке — несмотря на цифровые технологии, призванные удовлетворять практически любые наши потребности, — многие из нас панически боятся математики.

Это наше общее недомогание: Посттравматический Математический Беспорядок.

Если вы думаете, что откроете для себя в этой книге «Новую математику» — вы ошибаетесь. Это Старая математика, и не существует «неверного» способа заниматься ею. Математика является настолько же элементарной, как и биение сердца.

Также просто как 1,2, 3…

Математика для мистиков. Тайны сакральной геометрии - читать онлайн бесплатно полную версию (весь текст целиком)

Математика для мистиков. Тайны сакральной геометрии - читать книгу онлайн бесплатно, автор Ренна Шессо
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Все начинается с малого: от кончика пальца к ладони каждая фаланга пальца увеличивается примерно на 1,618 % (рис. 86). При измерении в противоположном направлении следует обратный отсчет (рис. 87).

Продолжим рассмотрение параметров человеческого тела. Так, величина, соответствующая расстоянию от кончика пальца до запястья, взятая 1,618 раза, будет примерно равна длине руки от запястья до локтя. А расстояние от запястья до локтя, взятое 1,618 раза, даст величину, близкую к вашему личному кубиту, с которым мы сталкивались в главе № 3, то есть, расстоянию от локтя до кончика пальца.

Обратившись к своему телу, замерьте длину отрезка от пола (между стоп, без обуви) до пупка и умножьте это число на 1,618. Результат будет весьма схож с расстоянием от кончика до кончика указательных пальцев при распростертых руках, то есть с вашей личной саженью.

Пропорция, лежащая в основе всех этих вещей, известна под разными именами — золотое сечение, золотая середина, золотая пропорция, aureo section (золотое сечение на латыни), сакральное деление, золотое деление, Божественная пропорция. Название немецкого термина — Goldene Schnitt, созвучно золотому снитчу из книг о Гарри Поттере [169] Livio, The Golden Ratio, p. 7. .

Создание пентакля шаг за шагом

Спираль Фибоначчи также может возникнуть из заключенных друг в Друга треугольников (рис. 88). Не важно, под именем тау или фи, золотое сечение является костяком пентакля, повторяясь в различных соотношениях и проявляя свое присутствие на каждом шагу (рис. 89).

Рис 88 Спираль Фибоначчи возникающая в треугольнике на основе may Рис - фото 114

Рис. 88. Спираль Фибоначчи, возникающая в треугольнике на основе may

Рис 89 Пропорции золотого сеченияФибоначчи постоянно возникающие в - фото 115

Рис. 89. Пропорции золотого сечения/Фибоначчи, постоянно возникающие в пентакле

Есть простой способ создать пентакль, используя треугольник, изображенный на рисунке 71 в главе № 8. Итак, для его создания потребуется расположить «спиной к спине» десять упомянутых треугольников (рис. 90). Мы можем это сделать, поскольку короткая сторона каждого такого треугольника равна короткой стороне тау («1» в золотом сечении), а длинная — соответствует длинной стороне тау (или фи, Ф, в золотом сечении), как показано на рисунке 78. Кроме того, длины сторон этого треугольника равны 3 и 5 — числам Фибоначчи. Теперь соедините линией каждую пару противоположных углов в пятиугольнике и получите искомую фигуру (рис. 91).

Но, скажем, мы хотим пентакль побольше. Легко, поскольку пятиугольник способен на такие штуки, о чем треугольник или квадрат — двухмерные формы с небольшим количеством сторон — могут только мечтать.

Рис 90 Построение пятиугольника из десяти треугольников Пифагора Рис 97 - фото 116

Рис. 90. Построение пятиугольника из десяти треугольников Пифагора

Рис 97 Добавление линий для создания других треугольников Пифагора внутри - фото 117

Рис. 97. Добавление линий для создания других треугольников Пифагора внутри пятиугольника

Если продлить линии сторон квадрата или треугольника, то получатся просто линии, устремленные в пространство, которые нигде и никогда не встретятся друг с другом. Но в случае с пятиугольником, линии, продолжающие его стороны, пересекутся и создадут новую форму. Вот так и возникнет наш пентакль (рис. 92). Соединение углов этой новой звезды прямыми линиями образует новый пятиугольник. Окружите концы звезды кругом, и вы получите настоящий магический знак, олицетворяющий всю скрытую в нем гармонию формы и взаимосвязи; сочетание круга и креста тоу образует скипетр Императора, символизирующий объединение и преобразование.

Примерно в 2400 году до н. э. вавилоняне определили круг как величину в 360°, основываясь на грубом подсчете количества дней в году. Триста шестьдесят является необычайно полезным и многосторонним числом, о чем знали вавилоняне — специалисты по наблюдению за небом. Математический потенциал его широк, поскольку 360 может быть разделено без остатка на любое из следующих двадцати двух чисел: 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120 и 180 [170] Pickover, Passion, p. 270. . (Хм… двадцать два… это количество карт Старших Арканов в колоде Таро).

Разделение круга на градусы позволяет нам отмечать долготу и широту и астрологически очерчивать пространство. В комбинации с нашим пентаклем круг также обладает любопытным набором математических особенностей. Разделите 360 градусов круга на 5 (пять концов пентакля) и вы получите пять сегментов по 72° каждый (рис. 93). Зафиксированные на окружности, эти точки соответствуют углам в 0°, 72°, 144°, 216°, 288° и вновь 0°, составляя, таким образом, 360°. Упростим эти числа, как мы уже делали в этой книге. Вы увидите, что все они сведутся к 9.

Если мы слегка повернем нашу звезду, как бы для создания десятиконечной — путем наложения другой 5-конечной звезды поверх первой — концы новой звезды будут располагаться в точках 36°, 108°, 180°, 252° и 324°. И вновь, каждое из этих чисел упрощается до 9.

Рис 92 Продлив линии сторон любого простого пятиугольника вы создадите - фото 118

Рис. 92. Продлив линии сторон любого простого пятиугольника, вы создадите пентакль

Рис 93 Внутри 360 круга градусное значение всех точек на которые попадают - фото 119

Рис. 93. Внутри 360° круга градусное значение всех точек, на которые попадают вершины пентакля, упрощается до 9. Начните с другого начального градусного значения, и вы получите другой результат

Конечно, мы будем совершенно неправы, если скажем, что это единственные числа в пределах 360°, которые упрощаются до 9. Напротив, таких чисел много. Возьмите любое, например, само число 9. Концы звезды отстоят друг от друга на 72°, поэтому добавив 72° к новой стартовой точке — 9, 81, 153, 225 и 275 — вы получите другой пентакль или пятиугольник, градусные значения всех вершин которого упрощаются до 9.

Но любые ли пять точек, отстоящие друг от друга на 72°, всегда дают пентакль с подобными свойствами? Вот и нет! В случае избрания другого стартового градуса каждый угол в этом пентакле будет упрощаться до его значения:

1°, 73°, 145°, 217° и 289° все упрощаются до 1 (часто через 10 или 19);

13°, 85°, 157°, 229° и 301 ° (все упрощаются до 4 (через 13)).

Это верно даже в случае с дробями: просто обращайтесь с ними, в процессе упрощения, как с отдельными разрядами, не обращая внимания на разделительную запятую:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ренна Шессо читать все книги автора по порядку

Ренна Шессо - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика для мистиков. Тайны сакральной геометрии отзывы


Отзывы читателей о книге Математика для мистиков. Тайны сакральной геометрии, автор: Ренна Шессо. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x