Андрей Журавлёв - Сотворение Земли. Как живые организмы создали наш мир
- Название:Сотворение Земли. Как живые организмы создали наш мир
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5294-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Журавлёв - Сотворение Земли. Как живые организмы создали наш мир краткое содержание
О том, как формировалась наша планета — такая, какой мы ее знаем, — книга Андрея Журавлева, палеонтолога, доктора биологических наук, профессора кафедры биологической эволюции биологического факультета МГУ.
Сотворение Земли. Как живые организмы создали наш мир - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Преимущественно коническая и столбчатая форма строматолитов предопределялась несколькими факторами. В первую очередь фототаксисом — стремлением к свету бактериальных сообществ, но не только. Поскольку цианобактериальная часть сообщества выделяла кислород, пузырьки газа скапливались на кончике строматолита, куда устремлялись оксифильные бактерии, а за ними другие — потребители органики. (Такие ископаемые пузырьки начинают встречаться в строматолитах возрастом 2,7 млрд лет — на исходе архейского эона.) А правильность сложных построек (выдержанное расстояние между отдельными конусами) объясняется тем, что бактериальное сообщество дробилось на отдельные группы, борющиеся друг с другом за ресурсы.
Строматолитовая форма существования широко распространилась (рис. 4.1л), поскольку жить под защитой минеральных слойков оказалось очень выгодно: биопленки и биоматы быстро высыхали и повреждались ультрафиолетовым излучением, а со временем стали выедаться одноклеточными эукариотами. Под минеральными слойками сохранялась влага, для ультрафиолета они были непроницаемы, а для того, чтобы их разрушить, нужны были железные зубы, как у современных моллюсков — хитонов. Кроме того, в инертные минералы можно было упрятать ионы тяжелых металлов и мышьяка, растворенные в бескислородном океане в повышенных концентрациях и потому представлявшие опасность для жизни.
В архейском океане в возведении карбонатных построек могли участвовать протео- и ацидобактерии (известные в современных микробиалитах), но, поскольку они не имели таких прочных оболочек, как у цианобактерий, шансов сохраниться у них не оставалось. Эти члены сообщества прокариот могли обеспечить и другие пути образования карбонатов, например через последовательность реакций, начинавшуюся с разложения диамида угольной кислоты [(NH 2) 2CO]:
(NH 2) 2CO + 3H 2O → 2NH 4 —+ HCO 3 —+ OH —;
2HCO 3 —+ Ca 2+→ CaCO 3+ H 2O + CO 2.
«Пузырьки кислорода», впервые застрявшие в строматолитах около 2,7 млрд лет назад, вероятно, и являются древнейшими свидетельствами существования цианобактерий — основной группы фототрофов (как в виде отдельных организмов, так и в форме пластид многих водорослей и высших растений). К этому же рубежу приурочены заметные изменения в изотопной подписи углерода (рис. 4.1е), повышенное содержание органического углерода в морских отложениях (такие объемы вряд ли могли образоваться за счет одного бескислородного фотосинтеза) и находки микрофоссилий, похожих на цианобактерии.
Морфология протерозойских бактериальных чехлов, скажем из сухотунгусской свиты Сибирской платформы, указывает на их принадлежность цианобактериям, внешне похожим на современные калотрикс ( Calothrix ) и формидиум ( Phormidium ): именно эти мелководные фототрофы нуждаются в толстых оболочках, предохраняющих от ультрафиолетового излучения. На присутствие цианобактерий указывают и состав органического вещества, иногда сохраняющегося в чехлах, и соотношение стабильных изотопов углерода. Способны были поучаствовать в строматолитостроении и коккоидные бактерии, образующие обильные колонии пленочной и грибовидной формы (напоминающие Entophysalis ). В некоторых строматолитах насчитывается до десятка видов разных цианобактерий.
Цианобактерии жили не только под защитой строматолитовых корок: они освоились даже на периодически пересыхающем мелководье и играли там весьма заметную роль. Заметную благодаря золотистому пигменту ( лат. pygmentum — краска) сцитонемину, предохранявшему клетки как цианобактерий, так и водорослей от ультрафиолетового излучения. Конечно, в клетках должны были находиться и пигменты, связанные с фотосинтезом, подобные хлорофиллам, поскольку изначально и они служили для рассеивания излучения. (Механизм рассеивания затем и использовался в фотосинтезе.) От гибели бактерии также защищались с помощью акинет — толстостенных удлиненных спор с обильными запасами питательных веществ: акинеты могли выдержать и временную засуху, и чрезмерное осолонение, и сильное опреснение.
Прослеживание молекулярной истории этих прокариот также показывает, что оксифототрофная ветвь отделилась от нефотосинтезирующей и анаэробной линии цианобактерий 2,6–2,5 млрд лет назад. Последние могли существовать и раньше и даже отладить фотосистему II — один из важнейших компонентов всей системы фотосинтеза, необходимый для расщепления молекул воды. В бескислородном архейском океане эта фотосистема была задействована для забора электрона у Н 2S, чтобы окислить S 2–до S 0. С этим источником электронов, так же как с Fe 2+, разные прокариоты не могли расстаться еще долго.
Глава 8. Когда раскрылся железный занавес
Состав Мирового океана как водного тела тоже в значительной степени определяется наличием в воде живых существ. Например, в современных морях продолжительность пребывания атомов кремния, фосфора, углерода, азота и кальция составляет всего от 10 до 100 лет (что на порядок ниже ожидаемой продолжительности, исходя из атомной массы этих элементов и объемов их поступления в океан), тогда как атомов натрия и хлора — 50 000 лет. Обусловлена эта разница тем, что Si, P, C и Ca являются биогенными элементами и востребованы живыми существами для создания органических и неорганических (скелет) тканей. Эти элементы очень быстро изымаются из раствора, а невостребованные Na и Cl накапливаются, и морская вода приобретает вкус поваренной соли. Если бы не организмы, то состав океана регулировался бы только притоком элементов (реки, подземные воды, вулканические и гидротермальные выделения, растворение океанической коры) и их стоком (формирование эвапоритов, глубоководных сульфидов, испарение и поглощение океанической корой). Впрочем, со временем организмы смогли вмешаться даже в эти физико-химические процессы.
Углерод, как основа всех органических соединений, конечно, был востребован всегда, и, скажем, на Карельском щите нефтяные залежи появились уже 2 млрд лет назад, раскинувшись на площади более 10 000 км 2и накопив 25 × 10 13кг углерода. Такие масштабы «нефтеобразования» свидетельствуют о высокой продуктивности палеопротерозойского океана. Понятно, что с тех пор органика обернулась почти графитом, на 98 % сложенным углеродом, а особые горные породы получили название шунгитов по карельскому поселку Шуньга. Часть углерода вместе с кальцием осаждалась строматолитовыми микробными сообществами.
Железо — тоже важный биогенный элемент — в современном мире даже не успевает раствориться, смешаться с мировыми водами (продолжительность его пребывания ничтожно мала) и прямо на месте, скажем после извержения вулкана, «съедается» фитопланктоном. Пока жизнь пребывала в прокариотном состоянии, кремнезем никем еще не потреблялся, и на дне архейских и протерозойских морей осаждались неорганические кремневые слойки, исчезнувшие в фанерозойском эоне с появлением первых же организмов, начавших строить кремневый скелет. А когда организмы уже «осознали» важность железа, но еще не придавали значения кремнию, образовались необычные полосчатые железистые кварциты. Тем более что железа в океане было предостаточно: оно выносилось вместе с гидротермальными растворами в области развития срединно-океанических хребтов и поступало с суши, где пока еще разрушались в основном мафические породы.
Читать дальшеИнтервал:
Закладка: