Борис Жуков - Дарвинизм в XXI веке
- Название:Дарвинизм в XXI веке
- Автор:
- Жанр:
- Издательство:ACT, Corpus
- Год:2020
- Город:Москва
- ISBN:978-5-17-112710-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Жуков - Дарвинизм в XXI веке краткое содержание
Дарвинизм в XXI веке - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Но попытка Больцмана обобщить созданную им модель на открытые системы оказалась более чем неудачной. Строгой количественной модели не получалось, качественные же рассуждения неизбежно приводили к выводу, что эволюционирующая система неизбежно должна деградировать вплоть до полного распада. Получалось, что либо прогрессивная эволюция, ведущая к усложнению эволюционирующей системы, невозможна вовсе — либо что главнейшие теоретические достижения самого Больцмана полностью неверны (как это и утверждали его многочисленные научные противники, среди которых были такие крупные ученые, как Анри Пуанкаре, Эрнст Мах и Вильгельм Оствальд) или, во всяком случае, неприменимы к живым организмам. Эта неудача произвела на Больцмана тяжелейшее впечатление и стала одной из причин хронической депрессии, приведшей в конце концов этого замечательного ученого и мыслителя к самоубийству.
Путь к выходу из тупика, в который уперся Больцман, наметился только в середине ХХ века в работах бельгийского физика российского происхождения Ильи Пригожина. Разумеется, он не опроверг Больцмана — которого, кстати, очень высоко ценил и на идеи которого прямо опирался в собственной работе. Но Больцман, надеясь перейти от замкнутых систем к открытым, пошел самым очевидным путем — попытался для начала рассмотреть процессы и состояния, близкие к тем, которые рассматривала классическая термодинамика (а также его собственная статистическая модель). Именно этот столь естественный подход и загубил все дело: система, параметры которой были близки к равновесному состоянию, могла эволюционировать только к нему. То есть — к максимальной энтропии.
Пригожин пошел прямо противоположным путем, обратившись к системам, находящимся в резко неравновесном состоянии, и к тому же рассматривая не только динамику системы как целого, но и локальные эффекты внутри нее. Результаты оказались довольно неожиданными.
Если некая система находится в резко неравновесном состоянии, это означает, что в ней имеется значительная разница каких-то потенциалов. Это может быть электрический потенциал, разница температур, давления (в жидкости или газе), разность потенциальных энергий, определяемая перепадом высот и т. д. Между такими областями могут возникать потоки вещества, энергии или того и другого, направленные на выравнивание потенциалов: тепло передается от нагретой части к холодной, вода течет вниз, между электрическими полюсами возникает ток — потоки заряженных частиц. Все эти процессы сопровождаются увеличением суммарной энтропии системы — в полном соответствии с представлениями классической термодинамики. Но оказалось, что в самих этих потоках (или в тех средах, через которые они текут) при определенных условиях могут возникать процессы самоорганизации : в некоторой локальной области элементы системы сами собой начинают выстраиваться в высокоупорядоченные структуры и вести себя согласованно. В качестве примера такого спонтанного само-упорядочивания обычно приводят конвекционные ячейки Бенара — правильные шестиугольные структуры, образуемые конвекционными потоками в не слишком толстом слое вязкой жидкости при равномерном подогреве снизу. На самом деле феномены такого рода разнообразны и общеизвестны: это морские течения, сезонные ветры, циклоны и т. д. При этом энтропия областей, вовлеченных в самоорганизацию, снижается , хотя энтропия системы в целом повышается. Получается, что самоорганизующиеся структуры отдают остальным частям системы не только всю причитающуюся им прибавку энтропии, но и кое-что сверх того. Чтобы подчеркнуть парадоксальность такого поведения, Пригожин назвал такие системы диссипативными, то есть «рассеивающими»: происходящее в них повышение упорядоченности происходит за счет ускоренного рассеивания энергии в окружающих их частях «большой» системы.
Созданная Пригожиным неравновесная термодинамика и особенно концепция самоорганизации окончательно сняли мнимое противоречие между эволюционной теорией (а фактически — всей биологией) и термодинамикой: живые организмы с термодинамической точки зрения суть не что иное, как пригожинские диссипативные системы, возникшие и существующие в потоках энергии (будь то солнечный свет или иные виды энергии — см. сноску в начале главы), протекающих в далекой от равновесия макросистеме — Солнечной. Ни индивидуальное развитие живых существ, ни их эволюционные изменения (включая усложнение некоторых из них), ни даже само возникновение жизни из чисто химических веществ и процессов также не противоречат современной термодинамике. И если некоторые авторы продолжают видеть тут какой-то разрыв (напомним, что эссе Роже Кайуа увидело свет в 1972 году — через 25 лет после первых публикаций Пригожина), то это говорит лишь об их слабой осведомленности в тех областях, о которых они берутся судить.
Картину полного взаимопонимания между разными областями современного естествознания портит лишь одно: сегодня, спустя 70 лет после создания неравновесной термодинамики, задача, поставленная Больцманом, остается нерешенной: содержательное количественное описание функционирования (а тем более эволюции) живых систем в категориях термодинамики по-прежнему отсутствует. Хотя за это время и сама «новая термодинамика» отнюдь не стояла на месте [262], и попыток применить ее достижения к анализу биологических явлений и процессов было немало. Но последние оказались слишком сложными, слишком нелинейными, слишком богатыми обратными связями и степенями свободы, так что даже сама возможность строгой термодинамической интерпретации эволюционных процессов в общем виде сегодня выглядит весьма сомнительной.
Что ж, как известно, образцовая научная теория — классическая механика — оказалась неспособной решить в общем виде (то есть для произвольных значений масс, скоростей и взаимного начального расположения) задачу о взаимодействии всего трех тел. И это не отменяет ни ее достижений, ни ее эффективности в решении конкретных задач. То же самое можно сказать и о термодинамическом подходе к проблемам биологии: на его счету уже имеется немало успехов. Существуют целые области теоретических исследований, целиком основанные на термодинамическом или схожем с ним формальном аппарате, и предметом их рассмотрения становятся, в числе прочих, эволюционные процессы (правда, в основном представленные математическими моделями). Однако содержательный рассказ о таких исследованиях требует привлечения соответствующего математического аппарата и в любом случае выходит за рамки темы этой книги.
Итак, термодинамика благосклонно разрешила жизни усложняться, лишь задав для этого процесса определенные рамки и включив живые организмы в более общий класс самоорганизующихся систем. Но дальнейшее рассмотрение феномена усложнения живых существ в ходе эволюции не осталось исключительной прерогативой самой эволюционной биологии. Идея развития , поступательного движения в сторону все более совершенных форм была слишком важна для европейской мысли Нового времени (и особенно XIX века), а биологическая эволюция была слишком наглядным и удобным «модельным объектом» для нее. Не удивительно, что проблема прогрессивной эволюции никогда не рассматривалась как чисто биологическая, а всегда была вовлечена в общефилософский дискурс. И зачастую понимание этой проблемы куда больше зависело от преобладающих в обществе (или в голове конкретного исследователя) философских взглядов, чем от доступного фактического материала или от нужд самой эволюционной теории.
Читать дальшеИнтервал:
Закладка: