Николай Кукушкин - Хлопок одной ладонью
- Название:Хлопок одной ладонью
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2020
- Город:Москва
- ISBN:978-5-0013-9315-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николай Кукушкин - Хлопок одной ладонью краткое содержание
Оказывается, в человеческом страдании виноваты динозавры, легкие существуют благодаря лишайникам, а главным событием в жизни наших предков за последний эон было превращение в червей. «Хлопок одной ладонью» – это история человека и его внутреннего мира, вмещающая в себя весь путь от неорганических молекул до возникновения языка и рассказанная так, будто это рыцарский роман или мифический эпос.
Хлопок одной ладонью - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Одна из главных форм существования энергии – это материя, то есть энергия с массой. Известная нам материя состоит из атомов, крупиц энергии, пойманной в форме массивных комков. Благодаря наличию массы атомы обладают свойствами, интуитивно понятными нам, массивным существам. Атомы, например, отскакивают друг от друга – их можно весьма условно сравнить с бильярдными шарами.
Все атомы имеют похожую структуру. В центре – тяжелое ядро, несущее в себе почти всю массу атома. Ядро состоит из плотно слепленных друг с другом протонов и нейтронов, которых может быть от одной штуки (у водорода) до пары сотен (у урана). У нейтронов есть только масса, а у протонов, помимо массы, есть еще заряд – особое свойство материи, которое существует в двух вариантах, притягивающих друг друга. Мы называем эти варианты положительным и отрицательным зарядом: у протона по договоренности плюс, а противоположный минус – у еще одной составляющей атома, электрона.
В основном атом состоит из пустоты. Ядро из протонов с нейтронами – центр тяжести – занимает ничтожную часть пространства по сравнению с диаметром атома. Поверхность же атома состоит из почти невесомого электронного облака. В школьных учебниках принято писать, что электрон летает вокруг ядра, но это сразу создает ложное представление, которое приходится потом долго ломать, когда дело доходит до квантовой механики. Дело в том, что если атом в целом еще худо-бедно напоминает шарик, то электрон – вообще нечто иное, и как шарик его никоим образом не описать. Он и волна, и материя. У него есть масса, но нет четкого положения: вероятность его существования как бы размазана по пространству, окружающему атом. Электроны имеют заряд, противоположный протонному, благодаря чему электронная оболочка и окружает ядро, к которому ее все время тянет. Таких оболочек у атома может быть много, они слоятся и переплетаются вокруг ядра многомерной квантовой капустой, от которой студентам-первокурсникам на лекциях по химии или физике обычно становится плохо.
Различаются атомы количеством протонов, нейтронов и электронов. Атомы с определенным количеством протонов называются элементами. Элемент – это тип атома. У каждого элемента свои свойства. Самый простой элемент – водород. У водорода один протон и один электрон, а нейтронов обычно нет вообще. У углерода, например, 6 протонов и обычно 6 нейтронов, а у железа – 26 протонов и 30 нейтронов. Чем больше протонов с нейтронами – тем атом тяжелее. Количество электронов в норме уравновешивает количество протонов, нейтрализуя общий заряд атома. Но в махинациях с электронами, как мы увидим, состоит вся атомно-молекулярная жизнь.
Атомам все время не сидится со своим набором электронов. В этой нервозности – причина всех химических реакций. Спокойна только особая группа атомов, носящих благозвучное название благородных газов: гелий, неон, аргон, криптон, ксенон, радон. В пантеоне химических элементов они как шесть бодхисаттв, поддерживающих баланс своих электронов в полной гармонии с протонами, лишенные желаний и устремлений, не вступающие ни в какие реакции и ведущие одиночную жизнь в форме газа.
Остальные атомы, так или иначе, чего-то хотят от других атомов, благодаря чему и существуют вещества, предметы и организмы. Некоторые атомы не удовлетворены своим «естественным» количеством электронов и хотят оторвать или хотя бы оттянуть их от других атомов. Другим атомам слишком много положенного набора, и они ищут желающего принять избыток. У некоторых вроде бы все в порядке с количеством электронов, но у них нестабильная конфигурация, которую можно стабилизировать, только вступив в связь с другим атомом с похожей проблемой.
Химическая связь возникает, когда электронные облака двух атомов сливаются в единое облако. Полученная совместная электронная оболочка распределяется между ядрами-партнерами. Бывает мирное слияние, когда оба атома получают поровну коммунального облака. Бывают почти рейдерские захваты, когда один атом после слияния перетягивает облако на себя, и перед атомом-партнером встает выбор: либо довольствоваться краешком облака, прилипая к захватчику, либо отколоться и остаться вообще без электрона. Если облако растянуто на два ядра, то теперь два атома существуют как единое целое, и такая стабильная связка атомов называется молекулой. Молекулы помогают атомам успокоить свою нервозность.
Живой мир состоит не из отдельных атомов, а именно из молекул – конгломератов атомов, связанных друг с другом общими электронами. Молекулы живой природы – органические молекулы – отличаются своими огромными размерами. Они состоят не из двух-трех атомов, а из десятков, сотен, даже тысяч атомов, складывающих свои электронные облака в сложные трехмерные структуры. Количество возможных молекул бесконечно, а количество реально существующих молекул определяется, скорее, нашими способностями их находить или создавать. Но атомов гораздо меньше, чем молекул, а ключевые атомы природы, собственно химический каркас жизни, и вовсе можно пересчитать по пальцам.
Главный из них – бесспорно, углерод. Если говорить отвлеченно, то из углерода состоит все живое, а другие атомы – так, поналипли. Почему углерод? Он обладает уникальными среди элементов способностями. Атом углерода в молекуле может быть связан с двумя, тремя и даже четырьмя другими атомами, в том числе, и это особенно важно, с другими атомами углерода. В итоге образуются ветвящиеся цепи и многогранные кольца, причем их размеры и строение почти ничем не ограничены. Это свойство углерода настолько расширяет возможности и разнообразие состоящих из него молекул, что их изучение даже носит особое название – «органическая химия».
КСТАТИ
Есть такая шутка: что такое органическая молекула? Это любая молекула, интересная химикам-органикам.
Границу между органической и неорганической молекулой действительно сложно провести. На первый взгляд, это просто: подавляющее большинство органических соединений одновременно состоит из углерода и производится живыми организмами – отсюда «органика» в их названии. Но есть спорная территория, например углекислый газ – вездесущая и очень простая форма существования углерода, которая бывает на других планетах и безо всякой жизни. Его едва ли можно отнести к органическим молекулам, а вот мочевину – молекулу не намного сложнее, но гораздо более редкую за пределами биосферы – возможно. Именно синтез мочевины из цианата аммония, осуществленный немецким химиком Фридрихом Вёлером, считается первым случаем искусственного производства органического соединения из неорганического. Своим достижением Вёлер помог опровергнуть концепцию витализма, согласно которой в молекулах живого организма содержится особая жизненная сила, принципиально отличающая ее от «неживых» веществ.
Читать дальшеИнтервал:
Закладка: