Дмитрий Сахаров - Генеалогия нейронов
- Название:Генеалогия нейронов
- Автор:
- Жанр:
- Издательство:Издательство «Наука»
- Год:1974
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дмитрий Сахаров - Генеалогия нейронов краткое содержание
Д. А. САХАРОВ
ГЕНЕАЛОГИЯ НЕЙРОНОВ
ИЗДАТЕЛЬСТВО «НАУКА» МОСКВА 1974
АКАДЕМИЯ НАУК СССР ИНСТИТУТ БИОЛОГИИ РАЗВИТИЯ
© Издательство «Наука», 1974 г.
Генеалогия нейронов - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Это утверждение не соответствует действительности. Холинергический интернейрон аплизии Л10 тормозит некоторые клетки, открывая поры для ионов хлора, возбуждает другие, повышая проницаемость для натрия, а в клетке Л7 повышает проницаемость для обоих этих ионов [96].
Приходится с сожалением констатировать, что многие авторитетные специалисты в области физиологии и морфологии нервной системы, внесшие заметный вклад в изучение химических синапсов, допускают подчас непростительную небрежность в обращении с химической концепцией синаптической передачи. Можно лишь удивляться, например, легковерию, с каким многие восприняли дилетантскую идею Учизоно [318], что знак синаптического действия можно идентифицировать по форме и размеру синаптических пузырьков (см., например, в той же книге Экклса, стр. 136). Ведь очевидно, что эта идея подразумевает невероятное — что молекулярная организация органелл секреции должна зависеть от того, с какой клеткой продукт секреции встретится во внеклеточном пространстве.
Что касается упомянутого выше «принципа», то здесь необходимо отметить, что Экклс провозгласил его, практически не располагая экспериментальными фактами в его пользу. Ведь моллюски — единственные животные, у которых до сих пор удавалось регистрировать синаптические эффекты в разных постсинаптических клетках, иннервированных одним и тем же нейроном, и факты, полученные на моллюсках, противоречат «принципу» Экклса. Немногие факты, касающиеся млекопитающих, тоже не говорят в пользу этого «принципа». Так, терминальное сплетение норадренергических симпатических нейронов деполяризует мышечные клетки одних кровеносных сосудов, гиперполяризуя мышечные клетки других. Представляется крайне маловероятным, что одни участки сплетения образованы «возбуждающими» симпатическими нейронами, а другие «тормозными»,- скорее, это отростки одинаковых клеток, антагонистически действующие на разные мышечные рецепторы. Но детально это никем не исследовано.
Итак, важнейшие функциональные характеристики синапса — знак и ионный механизм синаптического эффекта могут определяться особенностями структур, воспринимающих действие медиатора. Другие характеристики — такие, как размеры, форма и длительность постсинаптического потенциала, облегчение, десенситизация, пластичность и т. п., определяются не без участия самого пресинаптического нейрона, но, судя по всему, без какой-либо необходимости менять медиатор. Упомянем в этой связи моторные окончания на быстрых и медленных мышцах членистоногих: разная эффективность синаптического действия обеспечивается здесь при одном и том же медиаторе — глютамате различиями в размерах терминалей, числе везикул, числе активных зон синапса и т. п. [см. обзор 279]. В нескольких работах, совместных с Т. М. Турпаевым, нами детально рассмотрены некоторые физиологические механизмы, обеспечивающие изменение параметров передачи в холинергических синапсах, в частности, влияние способа инактивации ацетилхолина на свойства синапса (см. гл. 7).
Нет и фатальной зависимости между типом медиаторного химизма и «макрофункцией» нейрона — его местом в рефлекторной дуге. Холинергические нейроны бывают и сензорными [86, 157], и вставочными, и эффекторными (примеры приводились выше). В тех же ролях выступают дофаминергические нейроны: сензорными они бывают у многих беспозвоночных, интернейроны хорошо известны у млекопитающих (см. главу 2) и гастропод [92], о существовании мотонейронов этого типа говорилось выше. Видимо, по мере накопления сравнительных данных наши знания о функциях, выполняемых нейронами того или иного химического типа, будут всё более расширяться. Они уже сейчас достаточно широки, чтобы окончательно отказаться от терминов «возбуждающий медиатор» и «тормозной медиатор».
В свете всего сказанного в этом разделе предположение о том, что химический тип нейрона может задаваться функциональным прессом — специализацией ли нейрона или режимом функционирования синапса, представляется лишенным основания. Из этого, конечно, не следует, что за нейронами определенного химического типа в определенном нервном образовании не может закрепиться определенная функциональная специализация [см., например, 2а]. Напротив, наличное разнообразие медиаторов предоставляет удобную возможность дифференцировать сигналы разного назначения: так, в каких-то мышцах медиатор А может быть возбуждающим, а Б — тормозным, но в других мышцах А и Б могут поменяться ролями.
6. 4. Специфичен ли химизм примитивных нейронов?
Из представления о плюрихимической примитивной нервной клетке с неизбежностью вытекает, что в простой нервной системе химическая специфичность нейронов должна быть выражена не так четко, как в сложной, эволюционно продвинутой Факты говорят о противоположном. В разделе 6.1. приводились данные, говорящие о совершенной специфичности холинергических, серотонинергических, дофаминергических нейронов гастропод. Результаты микрохимических исследований на их гигантских нейронах получают полное подтверждение в этом отношении в электрофизиологических наблюдениях, которые однозначно показывают, что в том или ином синапсе действует индивидуальный передатчик, а не смесь таковых. Никаких данных, указывающих на меньшую, по сравнению с млекопитающими, степень медиаторной специфичности нейронов, нет и для других животных, обладающих простой нервной системой [см., например, обзоры 166, 279].
Даже у наиболее примитивных из организмов, имеющих центральную нервную систему, — у плоских червей (планарии и трематоды) разные группы нейронов закономерно различаются по своей специфичности. Об этом свидетельствуют данные люминесцентной гистохимии биогенных аминов: позиции и связи нейронов, содержащих серотонин, отличаются от позиций и связей нейронов, содержащих первичный катехоламин [89, 335]. У плоских червей описаны также системы пептидергических нейронов.
Более того, специфичность нейронов четко выражена у кишечнополостных — организмов, не обладающих ещё нервными центрами. Нервную сеть кишечнополостных обычно рассматривают как наиболее примитивную из нервных систем, развившихся в ходе эволюции многоклеточных животных. До недавнего времени оставались неясными даже принципы строения сети, вернее двух сетей, независимо развивающихся в эктодермальном и энтодермальном слоях кишечнополостных. Ныне полностью опровергнута идея о синцитиальной организации сети: даже у наиболее примитивных представителей типа, как и у относительно сложных, электронно-микроскопически доказано наличие истинных химических синапсов между нейронами. При этом обнаружился замечательный факт: сеть всегда построена из нейронов разных типов, с разными ультраструктурными характеристиками секреторных везикул [341 — 343].
Читать дальшеИнтервал:
Закладка: