Сэмюел Стернберг - Трещина в мироздании [litres]
- Название:Трещина в мироздании [litres]
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2019
- Город:Москва
- ISBN:978-5-17-109309-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сэмюел Стернберг - Трещина в мироздании [litres] краткое содержание
Трещина в мироздании [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Я внимательно слушала, а тем временем Джилл вытащила из стопки бумаг три статьи, все 2005 года [47] F. J. Mojica et al., “Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements”, Journal of Molecular Evolution 60 (2005): 174–182; C. Pourcel, G. Salvignol, and G. Vergnaud, “CRISPR Elements in Yersinia pestis Acquire New Repeats by Preferential Uptake of Bacteriophage DNA, and Provide Additional Tools for Evolutionary Studies”, Microbiology 151 (2005): 653–663; A. Bolotin et al., “Clustered Regularly Interspaced Short Palindrome Repeats (CRISPRs) Have Spacers of Extrachromosomal Origin”, Microbiology 151 (2005): 251–261.
, и оживленно пересказала их суть. Три коллектива исследователей (один из них – под руководством Мохики) независимо друг от друга обнаружили, что многие спейсеры CRISPR – те фрагменты ДНК, что встроены между повторяющимися последовательностями, – точно совпадают с ДНК известных бактериофагов. Что еще интереснее, возникало ощущение, что между числом последовательностей ДНК в бактериальной CRISPR, совпадающей с вирусной ДНК, и числом вирусов, способных поразить эту бактерию, существует обратная зависимость: чем больше совпадений, тем ниже вероятность инфицирования. Собственное новаторское исследование Джилл [48] A. F. Andersson and J. F. Banfield, “Virus Population Dynamics and Acquired Virus Resistance in Natural Microbial Communities”, Science 320 (2008): 1047–1050.
, в котором геномы целых микробных сообществ были восстановлены секвенированием небольших, перекрывающих друг друга фрагментов ДНК и их сборкой в одну более длинную последовательность, также показало, что многие разделенные регулярными промежутками последовательности на содержащем CRISPR участке хромосомы соответствовали последовательностям вирусной ДНК, обнаруженным в окружающей бактериальные сообщества среде.
В совокупности эти новые сведения стали отличной подсказкой для ответа на вопрос, какую роль CRISPR играет у бактерий и архей. Авторы упомянутых статей обнаружили свидетельство в пользу того, что CRISPR, вероятно, является частью иммунной системы прокариот – адаптацией, позволяющей микроорганизмам успешно справляться с вирусами.
Напоследок, в качестве последнего козыря, Джилл выложила на стол самую новую статью о CRISPR. Опубликованная коллективом исследователей из Национальных институтов здравоохранения под руководством Киры Макаровой и Евгения Кунина [49] K. S. Makarova et al., “A Putative RNA-Interference-Based Immune System in Prokaryotes: Computational Analysis of the Predicted Enzymatic Machinery, Functional Analogies with Eukaryotic RNAi, and Hypothetical Mechanisms of Action”, Biology Direct 1 (2006): 7.
, она называлась “Гипотетическая иммунная система прокариот, основанная на РНК-интерференции” ( A Putative RNA-Interference-Based Immune System in Prokaryotes ). Этот заголовок моментально привлек мое внимание. Хотя в этой статье, как и в трех предыдущих, явно недоставало убедительных экспериментальных данных, ее авторы проделали значительную работу, собрав всю доступную информацию о CRISPR. Сопоставив результаты множества более ранних исследований с экспертной оценкой распространения CRISPR у различных видов, они собрали из этих кусочков заманчивую новую гипотезу о том, что РНК служит ключевой составляющей иммунной системы одноклеточных организмов, таких как бактерии, и что эта система может быть функционально сходной с одним из объектов моих исследований, РНК-интерференцией.
Джилл не смогла бы найти лучшей приманки, чтобы завлечь меня в свои исследования. Не только вся моя научная деятельность до того момента была посвящена изучению молекул РНК, но я еще все больше концентрировалась на процессах РНК-интерференции в человеческих клетках. А тут еще Макарова и Кунин предполагали, что CRISPR представляет собой бактериальный аналог РНК-интерференции. Если это было верно, то моя лаборатория отлично подходит для того, чтобы разобраться с этим новым загадочным биологическим явлением. А перспективы были более чем соблазнительными, поскольку никто еще не провел экспериментов для подтверждения или опровержения теорий о биологическом смысле CRISPR – все только и делали, что плодили эти теории. Для биохимиков, таких как я, это был идеальный момент, чтобы ввязаться в борьбу за понимание того, как работает и для чего нужен CRISPR.
В завершение встречи с Джилл я поблагодарила ее и пообещала быть на связи. Мне нужно было переварить всю новую информацию и просчитать плюсы и минусы добавления исследований CRISPR к текущим проектам моей лаборатории. Если я соглашаюсь заниматься этой темой, мне понадобится ученый, постоянно занятый координацией работы по ней, так как у меня самой не хватило бы времени возглавить новый проект: я была слишком занята руководством лабораторией в целом.
Мне также нужно было освежить свои знания о мире бактерий и о вирусах, которые поражают эти бактерии. Я опубликовала немало научных статей о вирусе гепатита С , я изучала вирус гриппа с новым постдоком в собственной лаборатории, и я знала, что механизм РНК-интерференции тесно связан с противовирусной защитой растений и животных. Но я никогда не изучала вирусы бактерий и даже не особенно задумывалась о них. Если я собираюсь присоединиться к исследованиям Джилл, это положение дел нужно было менять.
Фредерик Туорт, британский бактериолог, работавший в начале XX века, стал первым ученым, отметившим действие бактериальных вирусов. По иронии судьбы, изначально Туорт собирался исследовать не вирусы бактерий, а вирусы, поражающие животных и растения, – а они были открыты уже давно. Однако в ходе попыток извлечь вирусы из таких субстратов, как навоз и сено, а затем культивировать их, Туорт обнаружил странную колонию бактерий из рода Micrococcus . Складывалось ощущение, что бактерии больны; вместо того чтобы, как большинство других бактерий, плотными колониями расти на питательной среде в чашках Петри, их культуры выглядели водянистыми и прозрачными. Если Туорт брал мазок с водянистой колонии микрококков и переносил его на здоровую, последняя через какое-то время тоже приобретала стеклянистый вид, словно ее чем-то заразили. Туорт написал статью, в которой предположил, что инфекционный агент в данном случае имеет вирусную природу, но идея о том, что вирусы способны заражать бактерии, в то время казалась неслыханной, а у перемен, произошедших с культурами, могли быть и другие объяснения. Ученый не мог с полной уверенностью говорить, что конкретно поразило здоровые культуры.
В 1917 году, спустя два года после публикации статьи Туорта, вирусы бактерий заново открыл канадский врач Феликс д’Эрелль. Во время Первой мировой войны д’Эрелль служил во Франции, и ему поручили расследовать причину вспышки дизентерии, которая косила солдат одного из кавалерийских эскадронов. Стремясь выяснить, почему одни больные выздоравливают, а другие нет, д’Эрелль взял у пациентов образцы кала и подверг их обстоятельному, хотя и достаточно грубому анализу. Сначала он пропустил кровянистый стул своих подопечных через мелкоячеистый фильтр, чтобы удалить из него все твердые частицы – включая бактерии. Затем д’Эрелль налил немного отфильтрованной жидкости на культуры бактерий рода Shigella , вызывающих дизентерию. На следующий день он с удивлением обнаружил, что одна из культур заразных бактерий под фекальной жидкостью “растворилась подобно сахару в воде” – исчезла буквально за ночь [50] D. H. Duckworth, “Who Discovered Bacteriophage?”, Bacteriological Reviews 40 (1976): 793–802.
. Что еще интереснее, когда д’Эрелль поспешил в госпиталь узнать о состоянии пациента, у которого был взят этот образец кала, он обнаружил, что больному заметно лучше. Сопоставив эти факты, д’Эрелль заключил, что возбудителя дизентерии уничтожил некий паразит, которого ученый назвал бактериофагом (“пожирателем бактерий”); эта форма жизни должна была быть достаточно маленького размера, чтобы пройти через фильтр. Судя по всему, “бактериофаг” заражал бактерии фактически так же, как другие вирусы инфицировали растения или животных.
Интервал:
Закладка: