Евгений Романцев - Закономерные чудеса
- Название:Закономерные чудеса
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1976
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Евгений Романцев - Закономерные чудеса краткое содержание
Закономерные чудеса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Г. Кребс — один из классиков биохимии. Он ученик другого знаменитого ученого, О. Варбурга. В 1954 году Г. Кребс возглавил работу кафедры биохимии в Оксфордском университете, который славится своими научными традициями. Ученый широко известен блестящими работами в области изучения азотистого обмена. Он, в частности, выяснил механизм синтеза мочевины, важнейшего продукта обмена веществ в печени животных.
Еще работая в Кембридже, а потом в Шеффилде, Г. Кребс выполнил серию блестящих исследований по превращению лимонной кислоты, которая относится к так называемым трикарбоновым кислотам. Она играет важную роль в обмене углеводов, жиров и аминокислот в организме. Результатом этих исследований ученого стала фундаментальная теория обмена веществ в тканях, которая и была названа по имени автора циклом Кребса.
Основные результаты были опубликованы автором в 1937 году. Прошло немало времени, семнадцать лет. Работы Г. Кребса получили всеобщее признание, и в 1954 году за открытие цикла превращений лимонной кислоты ему была присуждена Нобелевская премия, одна из высших наград, которой отмечаются заслуги ученого.
Цикл Кребса — универсальная химическая система. Пожалуй, это главный, если не единственный, путь превращений остатков уксусной кислоты во всех тканях млекопитающих и человека. Он распространен среди многих микроорганизмов и у большинства растений.
В цикл Кребса входит не менее десяти последовательных химических реакций. "Главная задача" цикла — поэтапно отнимать водород от молекулы уксусной кислоты, образовавшейся на первом этапе процесса дыхания. В конечном итоге это приводит к образованию двух молекул углекислого газа и четырех пар атомов водорода.
На третьем этапе процесса дыхания должна произойти, казалось бы, простейшая химическая реакция: водород соединится с кислородом, и выделится энергия.
Однако если кислород и водород будут взаимодействовать быстро, произойдет мощный взрыв. Можно смешать в стеклянной колбочке кислород и водород и начать реакцию, пропустив через смесь электрическую искру. Результат будет плачевный: стеклянная колбочка разлетится вдребезги. Конечно, в домашних условиях такие опыты проводить ни в коем случае нельзя.
Нечто похожее, вероятно, произошло бы и с живой клеткой, если бы ее кислород и водород прореагировали с большой скоростью. Взрыва бы, конечно, не последовало, но клетка бы наверняка погибла. Чтобы этого не произошло, на третьем этапе процесса дыхания водород постепенно, маленькими порциями поступает от одного вещества — передатчика водорода к другому. Это специальные соединения, имеющие сложное химическое строение. Энергия освобождается тоже не сразу, а постепенно, частями, в нужном для клетки количестве, а ее избыток консервируется в молекулах аденозинтрифосфорной кислоты.
Последний этап процесса дыхания, пожалуй, наиболее ответственный. Именно здесь энергия окисляемых веществ "перескакивает" в молекулу аденозинтрифосфорной кислоты. И как это происходит, конечно, заслуживает специального рассказа.
Секретная лаборатория митохондрий
Когда я был студентом биологического факультета Московского университета, мне крупно повезло. Я слушал лекции замечательных биохимиков и отличных педагогов, академиков С. Северина и В. Энгельгардта.
С. Северин блестящий лектор. И когда я был студентом, и сегодня, в наши дни, на его лекции приходят студенты других факультетов. В его изложении сухие биохимические схемы приобретают характер захватывающих рассказов о трудных дорогах научного поиска. Его лекции о гликолизе и процессах дыхания были динамичными и, я бы сказал, остросюжетными. Как-будто вы сами вместе с лектором распутывали сложный клубок биохимических реакций и становились соучастником и очередных сенсационных открытий, и очередных разочарований.
Представим себе, что мы на лекции. Она подходит к концу. На доске написана стройная цепь химических реакций. Кажется, все ясно и задача решена. Но лектор, как опытный кормчий, ведет аудиторию дальше. "Итак, — говорит он, — загадка процесса дыхания решена или, по крайней мере, близка к разрешению. Однако один маленький, но упрямый факт способен сразить, казалось бы, несокрушимую и даже элегантную гипотезу".
В это время звенит непрошеный звонок.
"Как развивались события дальше, — говорит спокойно лектор, — вы узнаете на следующей лекции".
Академик В. Энгельгардт не только один из создателей современной молекулярной биологии. Во всех областях биологической химии, в которых работали он сам и его сотрудники, сделан существенный вклад.
Необычно смелая научная идея о существовании самой тесной связи между процессами дыхания и образованием богатой энергией аденозинтрифосфорной кислоты была высказана им в начале тридцатых годов. Через несколько лет эта идея нашла полное подтверждение в работах ученых Дании и Советского Союза.
Мы уже знаем, что в молекуле аденозинтрифосфорной кислоты есть три остатка фосфорной кислоты. Если их всего два, такую кислоту называют аденозиндифосфорной. Стоит к аденозиндифосфорной кислоте присоединиться еще одному остатку фосфорной, как получается уже знакомое нам и богатое энергией соединение — аденозинтрифосфорная кислота. Этот процесс биохимики называют специальным термином — фосфорилирование.
Теперь возникает законный вопрос: а где, в каком участке живой клетки это все совершается?
Сегодня ученые хорошо знают, что в митохондриях. Именно здесь идут одновременно процессы фосфорилирования и окисления. Эти два последних научных термина исследователи обычно объединяют и говорят так: образование аденозинтрифосфорной кислоты в митохондриях идет в результате процесса окислительного фосфорилирования, или, иными словами, что процессы окисления сопряжены с процессами фосфорилирования.
И все же самый тонкий механизм образования энергии оставался неясным. "Секретная лаборатория митохондрий" неохотно открывала свои двери перед исследователями. Трудно было объяснить, каким образом энергия, выделяющаяся при окислении, перемещается в молекулы аденозинтрифосфорной кислоты. Разгадкой этого занялись одновременно в нескольких лабораториях Советского Союза и за рубежом.
Пожалуй, наиболее интересные, систематические и оригинальные работы ведутся в лаборатории, возглавляемой талантливым воспитанником биологического факультета Московского университета В. Скулачевым. Но ни одно из научных, даже самых оригинальных, представлений не возникает на пустом месте. У каждого есть и своя предыстория. Имеет ее и точка зрения, отстаиваемая В. Скулачевым и его сотрудниками.
Читать дальшеИнтервал:
Закладка: