Кирилл Еськов - Доказательства эволюции
- Название:Доказательства эволюции
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2010
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Кирилл Еськов - Доказательства эволюции краткое содержание
). Отличия файла от оригинала минимальны. В файле отсутствуют по понятным причинам несколько видеороликов, которые имеются в оригинале, но все изображения и гиперссылки сохранены. Кроме того, в файле отсутствует самая последняя глава — фрагменты из книги Ф. Коллинза.
Доказательства эволюции - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Растение теосинте — малоизменившийся потомок дикого предка кукурузы
Кукуруза — одно из ярких живых свидетельств могущества искусственного отбора. Дикий предок кукурузы — растение теосинте — имело крошечный початок с небольшим числом мелких семян в жесткой, малосъедобной оболочке. Несколько тысячелетий искусственного отбора превратили теосинте в кукурузу. Ботаники традиционно относили теосинте и кукурузу не только к разным видам, но и кразным родам (соответственно, Euchlaena и Zea ). Так, в Большой Советской Энциклопедии читаем:«Теосинте — виды растений семейства злаков из рода эвхлена ( Euchlaena ).» Происхождение кукурузы от теосинте было доказано не так давно, так что даже сейчас среди уфологов в ходу байки о том, что кукурузу якобы занесли на землю инопланетяне, потому что у нее нет диких родственников (этакий специфический вариант «разумного дизайна»). Лишь в 1977 году на основании новых данных было принято решение включить теосинте в род Zea (кукуруза). Что, впрочем, нисколько не умаляет радикальных различий между кукурузой и ее диким предком — различий, созданных искусственным отбором.
Еще один яркий пример эффективности отбора был получен в знаменитых опытах Д.К.Беляева по одомашниванию черно-бурых лисиц, подробно описанных в популярной статье Л.Н.Трут «Обретет ли человек нового друга?»(Природа, № 6, 2007). Уже после шести поколений отбора на дружелюбное отношение к человеку в подопытной популяции лисиц стали появляться особи, своим поведением и даже внешними признаками (окраска, вислоухость, хвост бубликом и др.) напоминающие домашних собак (см. также: Беляев Д. К. Генетические аспекты доместикации животных).
Таким образом, вопреки утверждениям антиэволюционистов, искусственный отбор может создавать новые виды — при любом осмысленном понимании расплывчатого термина «биологический вид». Ну а дальше действует старая добрая «дарвиновская» логика: поскольку естественный отбор по сути дела является тем же самым процессом, что и искусственный, то и в природе могут из старых видов самопроизвольно возникать новые. Причем у природы было на это не 10 000 лет, как у человека, а свыше трех миллиардов, т. е. в 300 000 раз больше.
Часть II. Группы доказательств
1. Наблюдаемая эволюция
Наблюдаемые мутации как основа эволюционных новшеств
Наблюдаемые сегодня изменения в популяциях доказывают не только существование эволюции, но и существование ряда механизмов, необходимых для эволюционного происхождения всех видов от общего предка. Было установлено, что геномы подвержены разнообразным мутациям, среди которых перемещение интронов, дупликациягенов, рекомбинации, транспозиции, ретровирусные вставки, горизонтальный перенос генов, замена, удаление и вставка отдельных нуклеотидов, а также хромосомные перестройки.
Один из аргументов антиэволюционистов состоит в том, что разное число хромосом у разных видов якобы доказывает невозможность эволюционного превращения одного вида в другой, потому что виды с разным числом хромосом не могут скрещиваться, и мутант, у которого число хромосом изменилось, не оставит потомства, потому что не найдет себе брачного партнера с такой же мутацией. Ошибочность этого довода доказывается тем, что различия в числе хромосом на самом деле не являются непреодолимым препятствием для скрещивания и производства плодовитого потомства. Известны виды организмов (растений, насекомых, млекопитающих и др.) у которых наблюдается внутривидовая изменчивость по числу хромосом, причем особи с разным числом хромосом скрещиваются и дают нормальное плодовитое потомство. Один из примеров — дикие кабаны, у которых имеется значительный хромосомный полиморфизм ( Nombela et al ., 1990)
Весьма интересны недавние открытия, показывающие роль дупликации генов в формировании эволюционных новшеств:
1) Многофункциональные гены — основа для эволюционных новшеств
2) Геном ланцетника помог раскрыть секрет эволюционного успеха позвоночных
3) Обоняние и цветное зрение в эволюции млекопитающих развивались в противофазе
4) Прослежена эволюционная история одного из человеческих генов
5) Утрата полового размножения способствует появлению новых генов
6) Удвоение генов может приводить к видообразованию
Появление эволюционных новшеств («новой сложности») путем удвоения гена и последующего разделения функций между его копиями опровергает утверждения антиэволюционистов о том, что усложнение живых систем требует вмешательства разумной силы.
Также наблюдается изменение морфологииорганизмов и функциональные изменения — различные адаптации, появление способности усваивать новый вид пищи (в том числе — нейлон и пентахлорфенол, производство которых началось в 30-х годах прошлого века) и т. д… Кроме того, были обнаружены всевозможные промежуточные этапы видообразования, что свидетельствует о плавном характере возникновения новых видов.
Долгосрочный эволюционный эксперимент
Группе биологов из Университета штата Мичиган под руководством Ричарда Ленски удалось смоделировать в лаборатории процесс эволюции живых организмов на примере бактерий кишечной палочки Escherichia coli (см. E. coli long-term evolution experiment). Опыт был начат в 1988 году.
В силу скорости размножения смена поколений кишечной палочки происходит крайне быстро, поэтому ученые надеялись, что длительное наблюдение продемонстрирует механизмы эволюции в действии. На первом этапе эксперимента, в 1988 году, 12 колоний бактерий были помещены в идентичные условия: изолированную питательную среду, в которой присутствовал только один источник питательных веществ — глюкоза. Кроме этого, в среде был цитрат, который в присутствии кислорода эти бактерии не могут использовать в качестве источника пищи. За прошедшие двадцать лет сменилось более 44 тысяч поколений бактерий.
Ученые наблюдали за изменениями, происходящими с бактериями. Большинство из них носили одинаковый характер во всех популяциях — например, размер бактерий увеличивался, хотя и разными темпами. Однако где-то между поколениями номер 31 тысяча и 32 тысячи в одной из популяций произошли кардинальные изменения, не наблюдавшиеся в остальных. Бактерии стали способны усваивать цитрат.
Используя сохраненные образцы бактерий из различных поколений, исследователям удалось установить, что начало серии изменений, которые привели к образованию новой разновидности бактерий, произошло в районе поколения номер 20 тысяч и только в этой колонии (см: Bob Holmes Bacteria make major evolutionary shift in the lab(англ.). New Scientist (9 июня 2008).
Читать дальшеИнтервал:
Закладка: