Дэвид Линден - Осязание. Чувство, которое делает нас людьми
- Название:Осязание. Чувство, которое делает нас людьми
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2019
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Линден - Осязание. Чувство, которое делает нас людьми краткое содержание
Профессор неврологии и известный популяризатор науки Дэвид Линден увлекательно и доступно – буквально «на пальцах»– объясняет, как работают сложные механизмы осязания, а заодно разбирает его многочисленные загадки. Почему перец кажется нам жгучим, а мята – холодной? Почему мы боимся щекотки, если нас щекочет кто-то другой, и не реагируем на нее, если пытаемся пощекотать себя сами? Что на самом деле происходит там, где чешется? Чем оргазм принципиально отличается от других мышечных спазмов, например чихания?
В книге Дэвида Линдена читатель найдет ответы на эти и многие другие вопросы.
Осязание. Чувство, которое делает нас людьми - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Их ямки функционируют как фотокамеры с точечной диафрагмой. Спереди небольшая апертура, сзади – тонкая чувствительная к инфракрасному излучению мембрана, так сильно натянутая, что по обеим ее сторонам имеется воздушное пространство. Рис.5.4Б показывает, как апертура ямки ограничивает инфракрасное излучение таким образом, что его источник из конкретной точки пространства воздействует лишь на небольшой участок ямочной мембраны, тем самым позволяя ямке сформировать картину инфракрасного мира с низким разрешением. Ямочная мембрана содержит около 7000 сенсорных волокон тройничного узла змеи, которые передают информацию о ее инфракрасной карте мира в часть мозга, именуемую оптическим тектумом, где эта информация сливается с визуальной информацией, так что визуальная и инфракрасная карты накладываются друг на друга (рис.5.4В).
Рис.5.4. Гремучая змея при помощи ямки на голове, которая содержит модифицированную сверхчувствительную к температуре форму TRPА1, может улавливать инфракрасное излучение. (А) Ямка расположена между глазом и ноздрей. (В) Разрез ямки показывает, что она функционирует как своеобразная фотокамера с точечной диафрагмой, позволяя локализовать жертву. Нервные волокна из клеток тройничного узла расходятся по ямочной мембране, которая натянута, как барабан, создавая заполненное воздухом пространство. (С) Соответствие визуального (сверху) и инфракрасного (снизу) сенсорных миров гремучей змеи. Эти два потока информации взаимодействуют и сочетаются в мозге змеи. Отметим, что змея при помощи органов восприятия инфракрасного излучения в состоянии определить смутный силуэт теплокровного кролика, даже если жертва скрыта кустами или просто темнотой. Способность змеи улавливать инфракрасное излучение заключается не только в возможности отличать более теплые объекты на холодном фоне, но и более холодные объекты на теплом фоне – как, например, лягушку, выпрыгнувшую из пруда на согретую солнцем траву. (D) TRPA1 у гремучей змеи генетически модифицирован, так что его можно активировать при температурах выше 30 °С. TRPA1 у крысиной змеи, не обладающей способностью воспринимать инфракрасное излучение, лишь слабо активируется при нагревании, а человеческий TRPA1 не активируется вовсе. Рисунки А, Б и Г адаптированы из: Gracheva E. O., Ingolia N. T., Kelly Y. M., Cordero-Morales J. F., Hollopeter G., Chesler A. T., Sánchez E.E., Perez J. C., Weissman J. S., Julius D. Molecular basis of infrared detection by snakes // Nature 464. 2010. 1006–1011, с разрешения Nature Publishing Group. Рисунок В адаптирован из: Newman E. A., Hartline P. H. The infrared «vision» of snakes // Scientific American 246. 1982. 116–127., с разрешения Macmillan Publishers
Возможно, молекулярный рецептор, который отвечает за восприятие инфракрасного излучения в ямках гремучей змеи,– это та же сверхчувствительная форма TRPV1, что и у летучих мышей-вампиров? Но, изучив тройничные узлы, в которых находятся сенсорные нейроны, иннервирующие ямки змей, Дэвид Джулиус с коллегами убедились, что форма TRPV1 здесь обычная и восприятие змеей инфракрасного излучения объясняется не им. Зато они обнаружили в том же тройничном узле четырехсоткратное превышение по рецептору васаби – TRPA1. Это был удивительный результат, ведь у млекопитающих TRPA1 вообще не реагирует на нагревание. Когда человеческий и змеиный TRPA1 были выращены в почечных клетках, выяснилось, что змеиный TRPA1 активируется уже при температуре 30 °С, а человеческий к жаре почти не чувствителен. У крысиных змей, не обладающих лицевыми органами восприятия инфракрасного излучения, форма TRPA1 имеет слабую чувствительность к теплу. [103]Мы считаем TRPA1 лишь рецептором васаби только потому, что сначала изучали его у млекопитающих. При более «змеецентричном» подходе нам следовало бы определить TRPA1 как температурный сенсор, который может также активироваться васаби и чесноком.
Боа и питоны – змеи, которые появились миллионов лет на 30 раньше, чем ямкоголовые. У них тоже есть ямки, улавливающие инфракрасное излучение, обычно по тринадцать с каждой стороны головы. Расположены они в два ряда – один сверху от рта, другой снизу. Отверстия этих ямок ничем не стянуты, так что они работают не как фотокамеры. Вместо этого у каждой ямки есть свое поле обзора, в зависимости от ее положения на голове змеи. Поведенческие тесты позволяют утверждать, что питоны и боа не так чувствительны к инфракрасному излучению, как гремучие змеи. Потому неудивительно, что и TRPA1 питонов оказался менее чувствителен, чем его аналог у гремучих змей, но более чувствителен, чем TRPA1 крысиных змей. При сравнении последовательностей генов TRPA1 у людей, питонов и гремучих змей оказывается, что модификация гена TRPA1, в результате которой этот рецептор стал воспринимать тепло, происходила у змей дважды в ходе эволюции: сначала у древних питонов и боа, затем у более современных ямкоголовых видов. Иногда процессы случайных мутаций и естественного отбора приводят к сходным молекулярным и структурным решениям (таких, как чувствительность к инфракрасному излучению) у разных организмов, но между этими решениями могут лежать миллионы лет. Таков удивительный процесс конвергентной эволюции.
Не все животные используют рецепторы инфракрасного излучения для поиска добычи. Например, большинство животных убегают или улетают от лесных пожаров, а вот живущие в Северной Америке златки пожарные ( Melanophila ), напротив, летят им навстречу. Но движет ими не стремление к самоуничтожению. Они прилетают на место пожара, как только догорит огонь, и спариваются в теплом пепле. Затем самка откладывает яйца под обугленную кору сосен. Когда следующим летом на свет появляются личинки златок, они питаются обгорелой корой. (У живых деревьев есть механизмы химической защиты, благодаря которым личинки воспринимают кору как несъедобную.) В некоторых случаях внимание златок привлекали другие «горячие точки»– например, заводы или даже футбольные стадионы, где курили тысячи болельщиков. Вероятно, самое известное их нашествие приключилось в 1925 году в Калифорнийской долине. Когда у города Коалинга загорелась цистерна с нефтью, на нее полетели полчища златок. Газеты писали, что в Коалингу прилетели миллионы насекомых, которые оставались там еще несколько дней после окончания пожара.
Поскольку Коалинга находится в засушливой долине, можно предположить, что златки прилетели откуда-то с западных отрогов Сьерра-Невады, примерно в 130 километрах от города. У этих насекомых имеется по одной ямке, отвечающей за восприятие инфракрасного излучения, на обеих сторонах брюшка. Много лет спустя, когда Гельмут Шмиц и Герберт Бузак из Боннского университета провели вычисления для оценки уровня инфракрасного излучения, которое поступило на эти рецепторы с расстояния 130 километров, оказалось, что этот уровень так низок, что сливается с тепловым шумом, производимым самим организмом златки. Нервная система этого жучка выполняет сложную инженерную задачу, чтобы извлечь столь слабый сигнал и с его помощью запустить механизм миграции. Пока мы не знаем, используются ли в инфракрасных рецепторах златок TRPV1, как у летучих мышей-вампиров, TRPA1, как у гремучих змей, или что-то другое – возможно, вообще не принадлежащее к семейству TRP. [104]
Читать дальшеИнтервал:
Закладка: