Дэвид Линден - Осязание. Чувство, которое делает нас людьми
- Название:Осязание. Чувство, которое делает нас людьми
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2019
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Линден - Осязание. Чувство, которое делает нас людьми краткое содержание
Профессор неврологии и известный популяризатор науки Дэвид Линден увлекательно и доступно – буквально «на пальцах»– объясняет, как работают сложные механизмы осязания, а заодно разбирает его многочисленные загадки. Почему перец кажется нам жгучим, а мята – холодной? Почему мы боимся щекотки, если нас щекочет кто-то другой, и не реагируем на нее, если пытаемся пощекотать себя сами? Что на самом деле происходит там, где чешется? Чем оргазм принципиально отличается от других мышечных спазмов, например чихания?
В книге Дэвида Линдена читатель найдет ответы на эти и многие другие вопросы.
Осязание. Чувство, которое делает нас людьми - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Частично трудности в интерпретации этих открытий связаны с тем, что использовался именно гистамин, а это, как мы знаем, лишь одно из нескольких веществ, вызывающих зуд, и действуют эти вещества по разным химическим каналам. Большинство из нас имеют опыт снятия зуда антигистаминным кремом, и мы знаем, что он помогает лишь в некоторых случаях. По этим экспериментам нельзя судить о том, реагируют ли на боль нервные волокна, по которым передаются иные, не гистаминные формы зуда. Поэтому доказательств существования отдельных нейронов зуда у людей пока не получено. Важное ограничение экспериментов на людях состоит в том, что нам приходится вслепую охотиться на отдельные волокна с этим электродом: мы не можем заглянуть в нерв и отметить конкретное волокно. С мышами можно добиться гораздо большего прогресса, используя генетические, анатомические и электрические методы.
Зуд могут вызывать самые разные типы стимуляции кожи. Во многих случаях мы даже не обладаем пока пониманием молекулярных эффектов, вызывающих зуд. Для большинства стимулов зуда путь в мозг оказывается непрямым. Например, если кожа сильно натерта или проявляет местную реакцию на аллерген, включается воспалительный каскад (мы говорили о нем в главе 6 – см. рис.6.5). Молекулы, выделяемые иммунными клетками (например, гистамин из тучных клеток), могут поступать в гистаминовые рецепторы, расположенные на свободных окончаниях сенсорных нейронов в эпидермисе, и побуждать их испускать электрические импульсы (рис.7.2). В другом примере фрагмент естественного белка BAM8-22 поступает в другой рецептор на проводящих зуд нервных окончаниях кожи, который применительно к мышам называют MrgprC11, а к людям – hMrgprX1. Иногда происходит непосредственная активация рецептора зуда в окружающей среде. Например, хорошо известно, что противомалярийный препарат хлорохин вызывает зуд. Хлорохин непосредственно поступает в другой рецептор сенсорных нейронов, который называется MrgprA3. Отметим, что существует по меньшей мере три молекулярных сенсора, которые активируют нейроны, ответственные за распознавание зуда. И если некоторые активируются непосредственно сигналами окружающей среды, то большинство реагируют на химический сигнал-посредник в самом организме.
Если действительно существуют особые нейроны, отвечающие за зуд, то верны и следующие утверждения: 1) мы можем разрушать или подавлять эти нейроны и блокировать ощущение зуда, причем другие осязательные ощущения – боль и температура – останутся неизменными; 2) избирательная активация этих специализированных нейронов зуда должна вызывать ощущение зуда, но не боли и не других осязательных ощущений; 3) анатомическое распределение нервных окончаний отражает известное распределение ощущения зуда: они должны присутствовать в эпидермисе и во внешних слизистых мембранах, но отсутствовать в мышцах, связках, внутренних органах и т.д.
Рис.7.2. Два различных пути С-волокон при зуде в сопоставлении с болью. Нейромедиатор NPPB, по всей вероятности, специфичен для нейронов зуда. Напротив, нейроны боли выделяют глутамат, тем самым отправляя сигнал в нейроны заднего рога спинного мозга. Эти нейроны содержат рецепторы NPPB и, в свою очередь, выделяют редкий нейромедиатор GRP, сигнализируя им следующим нейронам в цепочке. Удаление нейронов с рецепторами GRP блокирует ощущение зуда, но не ощущение боли или легких прикосновений, что дает основание предположить, что эти два синаптических соединения специфичны именно для зуда [134] . Нейроны зуда можно разделить по меньшей мере на две категории: те, что содержат рецептор хлорохина MrgprA3 и в основном передают негистаминный зуд, и те, которые обладают только гистаминовым рецептором и отвечают за гистаминный зуд. Гистаминовые рецепторы возбуждают нервные окончания, открывая ионный канал TRPV1, а рецепторы хлорохина и BAM8-22 открывают ионный канал TRPA1. Эта диаграмма дает лишь общую схему. Скорее всего, существуют и другие популяции нейронов зуда, помимо показанных здесь. Кроме того, синаптические взаимодействия между потоками информации в спинном мозге на данный момент не вполне понятны
Один из подходов к определению потенциально специализированных нейронов – попытка выявить молекулу-нейромедиатор, используемую этими особыми нейронами для связи с соответствующими участками спинного мозга, и последующее удаление этой молекулы у мышей при помощи генетических манипуляций. Сантош Мишра и Марк Хун из Национального института здравоохранения так и поступили, сделав на основании опыта предположение о том, что нейротрансмиттер зуда – это молекула NPPB. [135]Выяснилось, что мышь-мутант без NPPB почти не испытывает зуда в ответ на множество стимулов, включая и гистамин, и хлорохин. А главное – мыши без NPPB нормально реагировали на боль, температуру и легкие прикосновения.
NPPB высвобождается аксонами сенсорных нейронов и передается таргетным нейронам заднего рога спинного мозга. У этих нейронов есть рецепторы, которые взаимодействуют с NPPB и распространяют электрические сигналы далее в головной мозг. После искусственного синтеза NPPB и впрыскивания этого вещества в спинной мозг мышей животные начали чесаться точно так же, как если бы испытывали зуд на коже в обычных условиях. После инъекции в спинной мозг особого токсина, который избирательно разрушает нейроны с рецепторами NPPB, мыши не отреагировали ни на применение зудящих стимулов, ни на впрыскивание NPPB в спинной мозг. Эти результаты позволяют предположить, что нейроны, использующие NPPB, специфичны именно для зуда. Если это верно, то избирательная активация этих нейронов должна вызывать зуд, но не боль и не ощущения легких прикосновений. На время создания этой книги отчетов о таких экспериментах еще не появилось, но, судя по всему, в некоторых лабораториях их пытаются провести.
Иннервирующие кожу нейроны, которые продуцируют NPPB, делятся как минимум на две категории. Большинство из них имеет на поверхности рецептор MrgprA3, но у некоторых он отсутствует (рис.7.2). Когда аксоны нейронов с MrgprA3 были локализованы, оказалось, что они заканчиваются в эпидермисе, но не в мышцах, связках или внутренних органах, то есть ведут себя именно так, как следовало бы ожидать от зудоспецифичных сенсоров. Был проведен ряд сложных генетических манипуляций с мышами, позволивший экспериментаторам искусственно активировать нейроны с MrgprA3 в коже, что вызвало реакцию зуда и не вызвало реакции боли. (При зуде мыши чешутся, а при боли потирают больное место.) Этот результат говорит, что сенсорные нейроны с MrgprA3 передают информацию о зуде, но не информацию о боли. Когда они были точечно разрушены, мыши по-прежнему могли воспринимать боль, температуру и легкие прикосновения, но почти не испытывали зуда при применении самых разных его стимулов. Впрочем, важно отметить, что отсутствие зуда не было полным: вособенности сохранилась значительная реакция на гистамин, за которую, судя по всему, отвечают и передающие зуд нейроны без MrgprA3.
Читать дальшеИнтервал:
Закладка: