Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни
- Название:От атомов к древу. Введение в современную науку о жизни
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5286-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни краткое содержание
Рекомендуется широкому кругу читателей, всерьез интересующихся современной биологией.
От атомов к древу. Введение в современную науку о жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
До той биомассы, которая успела захорониться в виде каменного угля раньше, чем возникли эффективные деструкторы, живая природа смогла добраться только с появлением человека, который неутомимо откапывает каменный уголь и жжет его, используя в качестве топлива. Будем иметь в виду, что процессы дыхания и горения описываются строго одним и тем же суммарным уравнением:
C 6H 12O 6(глюкоза) + 6O 2→ 6CO 2+ 6H 2O
Одна молекула глюкозы взаимодействует с шестью молекулами кислорода, давая в итоге шесть молекул углекислого газа и шесть молекул воды. С точки зрения интересов жизни на Земле главное тут — высвобождение углерода в виде углекислого газа. А уж фотосинтезирующие организмы (то есть растения) могут, захватив этот углекислый газ, синтезировать из него гораздо более сложные углеродные соединения, пригодные для построения тел живых существ. В этом плане влияние человека на общепланетный круговорот углерода скорее положительно. Огромная масса углерода, которая сотни миллионов лет была «заперта» в пластах каменного угля, благодаря нашим шахтам, паровозам и тепловым электростанциям вновь пошла в дело.
Мы уже мимоходом упомянули, что бывают и другие, нецеллюлозные типы клеточных стенок. Еще один чрезвычайно распространенный в природе полисахарид — хитин, входящий в состав клеточных стенок грибов (наряду с полимерами глюкозы, которые там тоже есть). Кроме того, хитина много в наружных покровах некоторых животных, например насекомых, ракообразных и паукообразных. И грибов, и насекомых на Земле очень много. Потому и общая масса хитина на планете получается гигантской. Хитин — полимер, во многом похожий на целлюлозу. Он состоит из остатков бета-глюкозы, но только модифицированных. Дело в том, что хитин — это азотсодержащий полисахарид. Его мономером является, строго говоря, не сама глюкоза, а ацетилглюкозамин — производное глюкозы, где к одному из атомов углерода вместо гидроксила присоединена аминоацетильная группа −NH−CO−CH 3.
Наконец, клеточные стенки бактерий состоят из еще более сложных азотсодержащих производных глюкозы, к которым дополнительно ковалентно «пришиты» цепочки аминокислот. Такой многокомпонентный полимер называется пептидогликаном. Самое интересное, что в состав пептидогликанов входят не только L-, но и D-аминокислоты. Это именно тот случай, когда D-аминокислоты в живых организмах все-таки присутствуют. В состав белков они, конечно, не входят и здесь, но в состав других соединений — в конце концов, почему бы и нет.
Мир, окрашенный по Граму
В 1884 году датский микробиолог Ганс Христиан Грам опубликовал новый метод окрашивания бактерий. Основой метода было применение сочетания органических красителей, главный из которых родствен по структуре обычным аминам (см. главу 1). Тут надо сказать, что окрашивание — это важно. Без окрашивания под микроскопом, как правило, толком ничего не рассмотреть. К тому же окрашивание должно быть стойким — чтобы не смывалось спиртами и другими растворителями при изготовлении препаратов, и, по возможности, дифференциальным — чтобы не красило все сплошь, ведь тогда в объекте, опять же, будет не разобраться. В общем, окраска объектов для микроскопии — это целая наука. В XIX веке, когда многое делалось наугад, изобретение нового красителя требовало как отличного знания химии, так и незаурядной интуиции.
Азотсодержащий краситель, предложенный Грамом, прекрасно действовал на бактерий. Но не на всех. Одних он исправно окрашивал в стойкий синий цвет, а на других почему-то вообще не держался — при промывке препарата они обесцвечивались. Так появилось разделение бактерий на грамположительных и грамотрицательных.
Умерший в 1938 году Ганс Христиан Грам, возможно, и сам не успел вполне осознать, насколько важную вещь он открыл. Обнаруженное им разделение бактерий по типу окрашивания оказалось признаком фундаментальнейших различий в строении клетки (см. рис. 6.6). У грамположительных бактерий снаружи от мембраны находится толстая пептидогликановая клеточная стенка. В этом плане их клетка более-менее похожа, скажем, на растительную, не считая того, что материал клеточной стенки другой. У грамотрицательных бактерий дело обстоит совершенно иначе. Их наружная оболочка включает две полноценные билипидные мембраны с тонкой пептидогликановой клеточной стенкой, расположенной между ними. Клеточная стенка грамотрицательных бактерий заключена между наружной и внутренней клеточными мембранами, как начинка сэндвича. Так не устроены никакие другие клетки.

Есть гипотеза, что первые на Земле живые организмы были именно грамотрицательными бактериями, и только у их потомков вторая — наружная — мембрана исчезла [50] Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution // Philosophical Transactions of the Royal Society of London, B: Biological Sciences , 2006, V. 361, № 1470, 969–1006.
. К сожалению, эта красивая идея слабо поддерживается молекулярно-биологическими данными, поэтому сейчас она не слишком популярна. Но независимо от того, верна она или нет, эволюционный зигзаг тут получился очень занятный.
7. Нуклеотиды
— Как вообще может анаэроб развиться в сложный многоклеточный организм и тем более — двигаться настолько быстро, как эта тварь? Подобный уровень активности жрет массу АТФ.
— Может, они не используют АТФ, — предположила Бейтс, пока я полез за справкой в КонСенсус: аденозинтрифосфат, источник энергии для клетки.
Питер Уоттс. Ложная слепотаВспомним, как устроена молекула бензола. Она состоит из шести атомов углерода, соединенных в кольцо таким образом, что одинарные углерод-углеродные связи чередуются с двойными (см. главу 1). Свободные связи в бензоле, как и всюду, заняты атомами водорода. Его краткая формула — C 6H 6. Именно эта молекула когда-то напомнила Фридриху Августу Кекуле кольцо из переплетающихся змей. Молекула бензола прекрасна и самодостаточна — казалось бы, что в ней можно поменять?
Кое-что можно. Например, заменить один из атомов углерода на атом азота. Азот трехвалентен, и это вполне позволяет ему встроиться в бензольное кольцо (только без водорода при нем). Тогда получается кольцевая молекула с пятью атомами углерода, одним атомом азота и тремя двойными связями, которая называется пиридин.
Можно заменить атомами азота и два атома углерода (не соседних, а через один). Получится кольцо с тремя двойными связями, четырьмя атомами углерода и двумя атомами азота. Эта молекула называется пиримидин (см. рис. 7.1). И вот она в биологии очень важна.

Присоединив к пиримидиновому ядру две гидроксильные группы (−OH), мы получим соединение, которое называется урацил. Полное химическое название урацила — 2,4-дигидроксипиримидин. Члены пиримидинового кольца принято нумеровать, считая от одного из атомов азота.
Читать дальшеИнтервал:
Закладка: