Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни
- Название:От атомов к древу. Введение в современную науку о жизни
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5286-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни краткое содержание
Рекомендуется широкому кругу читателей, всерьез интересующихся современной биологией.
От атомов к древу. Введение в современную науку о жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Первый этап: открытие
Само существование ДНК открыл в 1869 году швейцарец Фридрих Мишер. Это открытие ни в коей мере нельзя назвать случайным. Фридрих Мишер, 25-летний на тот момент ученый, буквально чуть ли не с рождения вошел в научную элиту своего времени. Он был сыном профессора-медика, а его родной дядя — Вильгельм Гис — оказался выдающимся эмбриологом и анатомом, имя которого нередко упоминается в учебниках и сейчас, в XXI веке. (Каждый студент-медик знает, например, пучок Гиса, проходящий в продольной перегородке человеческого сердца.) Племянник и дядя дружили. И скорее всего, именно от Вильгельма Гиса еще совсем юный Фридрих Мишер воспринял мечту раскрыть самые фундаментальные тайны живой природы. В 17 лет он поступил на медицинский факультет, но работать практикующим врачом, судя по всему, не собирался ни дня. Ему просто нужна была хорошая естественно-научная база, чтобы приступить к поиску, как он говорил, «теоретических оснований жизни». Мишер очень рано пришел к общему с Гисом убеждению, что «последние оставшиеся вопросы, касающиеся развития тканей, могут быть решены только на базе химии» [53] Dahm R. Friedrich Miescher and the discovery of DNA // Developmental Biolog y, 2005, V. 278, № 2, 274–288.
. И он решил стать биохимиком. Правда, этого слова тогда еще не существовало, но было понятие «физиологическая химия», означавшее то же самое. Поработав в великолепных немецких химических лабораториях, Мишер приобрел серьезную квалификацию химика-органика — и занялся изучением химического состава живых клеток.
Свой любимый объект — гной — Мишер обнаружил в хирургической клинике, по соседству с которой в тот момент работал. Из гноя оказалось очень удобно получать целые клетки, в первую очередь, конечно, лейкоциты — клетки иммунной системы, ответственные за воспаление. Именно из лейкоцитов Мишер и выделил вещество, обладавшее следующими четырьмя свойствами:
• оно всегда находится в высокой концентрации в клеточных ядрах, но почти отсутствует во внеядерной части клетки, так называемой цитоплазме ;
• его молекулы — большие, вполне сравнимые по размеру с молекулами белков;
• оно определенно является по химическим свойствам кислотой;
• оно состоит из углерода, водорода, кислорода, азота и довольно большого количества фосфора, но совершенно не содержит серы.
К тому времени биохимики уже знали, что в белках сера присутствует обязательно (как мы сейчас понимаем, она входит в состав некоторых аминокислот). А вот фосфора в них нет. Это со всей определенностью означало, что открытое Мишером вещество не белок, а нечто совсем другое.
Сам Мишер назвал это вещество «нуклеин», от латинского слова nucleus — ядро. Через 20 лет Рихард Альтман переименовал «нуклеин» в «нуклеиновую кислоту». Это название в науке и прижилось.
Мишер прекрасно понимал, что «нуклеин» не белок, и допускал, что это вещество выполняет какую-то особую функцию, свойственную только материалу клеточных ядер. Чтобы изучить химию нуклеина более детально, он использовал сперматозоиды — мужские половые клетки животных, в которых, кроме ядра, почти ничего толком и нет.
Между тем представление, что процессы передачи наследственной информации как-то связаны с клеточным ядром, к тому времени уже вошло в научный оборот. Это называлось ядерной теорией наследственности. Почему бы тогда «нуклеину» и не оказаться материальным носителем наследственных качеств? И действительно, в 1874 году Мишер записал: «Если бы мы предполагали, что какое-то одно вещество является специфической причиной оплодотворения, в первую очередь нам, несомненно, пришлось бы рассмотреть нуклеин».
Второй этап: рутина
Фридриху Мишеру необыкновенно повезло. В своем стремлении раскрыть главную химическую тайну жизни он сразу выбрал абсолютно правильное направление поиска. Полученные им результаты подготовили науку к грандиозному прорыву. Но вот самого прорыва как раз и не произошло. В течение следующих 40 лет, примерно с 1890 по 1930 год, исследования нуклеиновых кислот оставались в общем-то непопулярной областью биохимии. Люди, которым хватало квалификации, чтобы ставить биохимические опыты, в этот период гораздо больше интересовались белками. Тогда уже было ясно, что белки — универсальные химические «слагаемые» жизни. В отношении нуклеиновых кислот такой уверенности не было даже у энтузиастов, при том что исследование этих веществ по чисто химическим причинам было заметно более трудоемким, чем исследование белков. Неудивительно, что желающих ими заниматься находилось относительно немного.
Правда, и в этот период у некоторых людей случались озарения. Вопрос о биологической роли ДНК не обошел стороной, например, известный физиолог Жак Лёб. В вышедшей в 1906 году книге под названием «Динамика живой материи» он совершенно четко сформулировал два предположения:
• наследственная информация при оплодотворении, скорее всего, передается каким-то одним строго определенным химическим веществом;
• нуклеиновые кислоты являются гораздо более вероятными кандидатами на роль этого вещества, чем белки.
Лёб стремился сводить всю живую природу к простым физико-химическим факторам, и это, конечно, вызывало у многих биологов возражения, особенно когда применялось к таким сложным явлениям, как, например, поведение животных. Но именно в отношении передачи наследственной информации Лёб оказался абсолютно прав. Он, что называется, попал в яблочко. К сожалению, в 1924 году, когда ученый умер, оценить этого еще никто не мог. Предложенная им гипотеза о веществе наследственности просто затерялась среди множества других гипотез, казавшихся тогда не менее вероятными.
Американский биолог Леонард Троланд высказал другую смелую гипотезу: нуклеиновые кислоты — это своего рода небелковые ферменты, запускающие процесс копирования генетической информации [54] Troland L. T. Biological enigmas and the theory of enzyme action // The American Naturalist , 1917, V. 51, № 606, 321–350.
. Гораздо позже стало понятно, что эта мысль не просто красива, но и (опять же) в немалой степени верна. У некоторых нуклеиновых кислот такая функция действительно есть.
Увы и увы, 100 лет назад все эти идеи разбились о полное равнодушие профессиональных генетиков, интересы которых в тот период были совершенно другими. Впрочем, самих генетиков тут тоже можно понять. Их юная наука, только в 1905 году получившая свое название, развивалась невероятно бурно — и охватить все возможные направления просто-напросто не получалось. А при этом ни концептуальный аппарат генетики, ни создавшие ей славу «фирменные» методы исследований изначально ни с какой химией связаны вовсе не были. И в результате генетики начала XX века практически единодушно решили, что поиск химического носителя наследственной информации — дело далекого будущего, а пока что на это отвлекаться не следует.
Читать дальшеИнтервал:
Закладка: