Джоэль Курцмен - Да сгинет смерть! [Победа над старением и продление человеческой жизни]
- Название:Да сгинет смерть! [Победа над старением и продление человеческой жизни]
- Автор:
- Жанр:
- Издательство:Мир
- Год:1987
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джоэль Курцмен - Да сгинет смерть! [Победа над старением и продление человеческой жизни] краткое содержание
Да сгинет смерть! [Победа над старением и продление человеческой жизни] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Как только методика пересадки генов будет полностью отработана, ее можно будет использовать для борьбы со многими возрастными изменениями в функционировании отдельных клеток. И если существуют "гены смерти", которые управляют процессами дегенерации клеток, можно будет вводить в организм новые гены — синтетические или взятые у молодых организмов (людей, животных, бактерий), которые "выключат" гены смерти. Если же старение — результат нарушения работы отдельных генов (а не активная деятельность "генов смерти"), то с помощью пересадки генов можно будет заменить или исправить эти плохо работающие гены. Возможно, пользуясь пересадкой генов, ученые смогут даже ввести развивающемуся в утробе матери плоду новую генетическую информацию, которая истребит "гены смерти" еще до рождения ребенка или предотвратит разрушение генов с возрастом.
Что и говорить, перспективы захватывающие, но следует помнить предостережение Р. Родни Хауэлла, генетика из Техасского университета: "Прогресс в лечении наследственных заболеваний будет продолжаться, но только постепенно. Каждая болезнь, безусловно, потребует отдельного решения задачи. Мне кажется маловероятной возможность одновременного революционного "прорыва" на всех направлениях".
Если можно будет пересаживать гены человеку, то не исключена возможность введения и искусственных генов для лечения наследственных болезней и предупреждения старения. Искусственные, синтетические гены, некогда существовавшие только в воображении писателей-фантастов, уже созданы. Первый такой ген создал Хар Гобинд Корана, американский генетик родом из Индии, работавший в Университете штата Висконсин и в Массачусетском технологическом институте. За свое открытие 46-летний Корана в 1968 г. разделил Нобелевскую премию с Маршаллом У. Ниренбергом (Национальный институт кардиологии в Бетесде, штат Мэриленд). Открытие, которое дало ясную картину процесса синтеза белка в клетке и привело Корану к синтезу гена, принадлежит Ниренбергу и было сделано им в 1961 г.
Ниренберг пытался расшифровать код в молекуле РНК, который заставляет каждую аминокислоту занять предназначенное ей место в молекуле белка. Начал он с простой РНК, оставив напоследок сложные природные РНК, и разгадывал код примерно так же, как это делает специалист по криптографии: сначала находит знак, заменяющий букву "е" (чаще всего встречающуюся в английских текстах), а уже затем приступает к расшифровке кода в целом. Такой подход оправдал себя, и простая РНК дала Ниренбергу ключ к одной части кода: он узнал, каким именно образом РНК определяет нужные аминокислоты при синтезе белка. Это открытие принесло Ниренбергу, которому в ту пору было всего 37 лет, всемирную славу. Его пригласили выступить перед представительным собранием ученых в Московском государственном университете им. М. В. Ломоносова [11] Это происходило на Международном биохимическом конгрессе в Москве в 1961 г. — Прим. ред.
, где, по словам одного из участников, это открытие заслужило признание "поистине сенсационного: была расшифрована первая буква генетического алфавита и тем самым было положено начало расшифровке кода".
В 1964 г. Корана, опираясь на открытие Ниренберга, задался целью создать искусственную РНК. Он собирал ее из имеющихся в продаже химических веществ и долгие месяцы кропотливо сплетал цепи синтетической молекулы РНК, звено за звеном, пока не добился успеха.
Создание Кораной синтетической РНК в сочетании с расшифровкой генетического кода, начатой Ниренбергом, позволило генетике шагнуть далеко вперед. Знание принципа, по которому РНК управляет аминокислотами при синтезе белков, помогло ученым понять, как протекает процесс обмена веществ в норме и как он нарушается. Зная функции РНК, они глубже постигли, каким образом генетическая информация, заключенная в клетке, проявляет себя в жизненно важных химических процессах.
Получив в 1968 г. Нобелевскую премию по физиологии и медицине, Корана и Ниренберг восприняли эту честь по-разному. Ниренберг, о котором говорили, что он настоящий гений, поглощенный своей идеей настолько, что ничего не видит вокруг и может споткнуться о собственные ноги, был недоволен шумной известностью. Примерно ко времени получения Нобелевской премии он стал задумываться над тем, допустимо ли с этической точки зрения вторгаться в область генетики. Дело кончилось тем, что Ниренберг прекратил исследования по генетике и занялся изучением поведения. Корану весть о присуждении Нобелевской премии застала на обрывистом берегу Атлантического океана, где он любовался закатом. Репортеров он встретил отрешенно, а на их вопрос, как он относится к награде, ответил: "Мне сейчас трудно ответить. Я все время работаю — впрочем, наверное, как и все мы".
Корана продолжал усиленно работать, и тем же точным, кропотливым способом, каким собирал молекулу РНК, стал собирать молекулу ДНК, стремясь создать настоящий ген.
Но ДНК — химически гораздо более сложная молекула, чем РНК, хотя состоит она в основном из тех
же компонентов. Молекула ДНК больше молекулы РНК, так как ее составляют две закрученные длинные цепочки атомов, а РНК — длинная однотяжевая цепочка. Корана потратил пять лет, прежде чем ему удалось собрать вещества, из которых складывается ДНК, в работающий ген. В 1970 г. он объявил о первом в истории успешном синтезе гена. Этот ген состоял из 154 отдельных компонентов, каждый из которых был не крупнее миллиардной доли дюйма.
Над созданием синтетических генов успешно работали и другие группы исследователей, в частности Фотис Кафатос с сотрудниками в Гарвардском университете. Новые, более простые методы, разработанные Нобелевскими лауреатами Дэвидом Балтимором и Говардом Темином, позволили упростить создание искусственных генов. Методика Балтимора-Темина напоминает использование фотографического отпечатка (РНК) для получения негатива (ДНК). Эти методы, уже широко применяемые многими лабораториями для массового синтеза ДНК, заключаются в превращении легко получаемой РНК в своеобразный конвейер для сборки генов. Такая технология производства генов, по словам обозревателя газеты "Нью-Йорк таймс", может оказаться нужной, "когда наука будет готова к производству генов с заранее заданными функциями, например для синтеза недостающего белка или для нейтрализации нежелательного белка". Творцы генов приблизили время, когда мы смажем с легкостью создавать гены, необходимые для борьбы со старением.
В августе 1976 г. Корана и его коллеги по Массачусетскому технологическому институту продвинули генетику еще на шаг вперед, ухитрившись не только синтезировать ген E. coli, но и пересадить его в живую клетку, где он продолжал работать, как и его "собрат" — природный ген. По признанию одного генетика, "синтез гена означал мощный прорыв вперед. Теперь этот ген работает, как настоящий, — от этого просто дух захватывает". Со временем наследственные болезни будут излечиваться путем замены дефектных генов здоровыми, созданными человеком.
Читать дальшеИнтервал:
Закладка: