Джонджо МакФадден - Жизнь на грани

Тут можно читать онлайн Джонджо МакФадден - Жизнь на грани - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биология, издательство Питер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джонджо МакФадден - Жизнь на грани краткое содержание

Жизнь на грани - описание и краткое содержание, автор Джонджо МакФадден, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира. В ней авторы рассматривают как новейшие экспериментальные данные, так и открытия с переднего края науки, и делают это в неповторимо доходчивом стиле. Джим Аль-Халили и Джонджо Макфадден рассказывают о недостающем компоненте квантовой механики; феномене, который лежит в основе этой самой таинственной из наук.

Жизнь на грани - читать онлайн бесплатно полную версию (весь текст целиком)

Жизнь на грани - читать книгу онлайн бесплатно, автор Джонджо МакФадден
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Квантовое туннелирование можно понимать как способ, с помощью которого частицы, находящиеся сначала по одну сторону барьера, попадают на другую его сторону, причем здравый смысл подсказывает, что этот способ невозможен. Под «барьером» мы подразумеваем физически непреодолимый (без необходимого количества энергии) участок пространства — что-то похожее на силовые поля из научной фантастики. Такой барьер может представлять собой узкий участок изоляционного материала, разделяющего проводники, или пустое пространство, например расстояние между двумя ферментами в дыхательной цепи. Он также может быть чем-то вроде энергетического «холма», который мы описывали выше, и ограничивать скорость протекания химических реакций (см. рис. 3.1). Представьте себе мячик, который толкнули вверх по склону невысокого холма. Для того чтобы мячик докатился до вершины, а затем скатился вниз по другому склону, необходимо толкнуть его достаточно сильно. Поднимаясь по склону, мяч будет замедлять движение и без необходимого количества энергии (полученной при достаточно сильном толчке) просто остановится и скатится туда, откуда его толкнули. Согласно классической механике Ньютона, единственный способ заставить мяч преодолеть барьер в виде вершины холма заключается в том, чтобы придать ему достаточное количество энергии для преодоления этой «энергетической» вершины. Но если бы на месте мяча оказался, скажем, электрон, а холм представлял бы собой барьер энергии отталкивания, существовала бы вероятность того, что электрон преодолел бы этот барьер в виде волны, прокладывая себе альтернативный и более эффективный путь. Это и есть квантовое туннелирование (рис. 3.5).

Рис 35Квантовое туннелирование сквозь энергетический ландшафт Важной - фото 7

Рис. 3.5.Квантовое туннелирование сквозь энергетический ландшафт

Важной особенностью квантового мира является то, что чем легче частица, тем легче она преодолевает энергетический барьер. Следовательно, ничего удивительного нет в том, что, как только стало понятно, что этот процесс — обычное явление для внутриатомного мира, ученые быстро обнаружили, что наиболее распространено в квантовом мире именно туннелирование электронов, поскольку они представляют собой чрезвычайно легкие элементарные частицы. Эмиссия электронов из металлов под действием электрического поля была описана в конце 1920-х годов именно как туннельный эффект. Квантовое туннелирование объяснило и то, как именно происходит радиоактивный распад: ядра определенных атомов, например урана, вдруг выбрасывают частицу. Этот пример считается первым успешным применением квантовой механики для решения проблем ядерной физики. В современной химии также подробно описано квантовое туннелирование электронов, протонов (ядер водорода) и даже более тяжелых атомов.

Важной особенностью квантового туннелирования является его зависимость (как и многих других квантовых явлений) от волновой природы частиц вещества. Однако тело, состоящее из большого количества частиц, которым необходимо преодолеть барьер, должно поддерживать такие условия, в которых волновые аспекты всех его составляющих подходили бы друг другу (например, совпадали бы длины волн). Иными словами, тело должно представлять собой то, что мы назвали бы когерентной системой или попросту системой, работающей «в унисон». Декогеренция описывает процесс, в ходе которого множество квантовых волн стремительно выбиваются из общего ритма и нарушают общее когерентное поведение, лишая тело способности к квантовому туннелированию. Частица может участвовать в квантовом туннелировании, только если она сохраняет волновые свойства, необходимые для преодоления барьера. Вот почему крупным объектам, например футбольным мячам, не свойственно квантовое туннелирование: они состоят из триллионов атомов, поведение и волновые свойства которых невозможно скоординировать и превратить в когерентную систему.

По квантовым меркам живые клетки также являются крупными объектами, поэтому с первого взгляда возможность квантового туннелирования в теплой и влажной среде живых клеток, где атомы и молекулы движутся в основном беспорядочно, кажется невероятной. Однако, как мы уже выяснили, внутренне строение фермента отличается от неупорядоченной среды клетки: движение его частиц представляет собой скорее хорошо поставленный танец, нежели суетливую толкотню. Давайте разберемся, насколько важна эта хореография частиц для жизни.

Квантовое туннелирование электронов в биологии

Де-волт и Чанс провели свой знаменитый эксперимент в 1966 году. Прошло всего несколько лет, и неожиданный температурный профиль эксперимента оказался вполне объяснимым. Джон Хопфилд — еще один американский ученый, сфера интересов которого охватывает несколько научных дисциплин — от молекулярной биологии и физики до компьютерных технологий. Хопфилд знаменит прежде всего как изобретатель ассоциативной нейронной сети, однако его всегда интересовали также и физические процессы, имеющие большое значение для биологии. В 1974 году он опубликовал работу под названием «Перенос электронов между биомолекулами путем термоактивированного туннелирования» [42] Hopfield J. J. Electron transfer between biological molecules by thermally activated tunneling // Proceedings of the National Academy of Sciences, 1974. — Vol. 71. — P. 3640–3644. , в которой предложил теоретическую модель, объясняющую результаты эксперимента Де-волта и Чанса. Хопфилд указал на то, что при высокой температуре энергии колебаний молекул будет достаточно для того, чтобы электроны могли достичь вершины барьера без туннелирования. При снижении температуры энергии колебаний будет недостаточно для того, чтобы поддержать ферментативную реакцию. Однако Де-волт и Чанс обнаружили, что реакция не прекращается при низких температурах. Хопфилд предположил, что при низких температурах электрон приводится в положение, при котором он оказывается на середине склона энергетического холма, при этом расстояние до вершины, которое он должен преодолеть, становится короче, а шансы на успешное осуществление квантового туннелирования — выше. И он оказался прав: перенос электронов путем туннелирования происходит даже при очень низких температурах, как и показали Де-волт и Чанс.

В наши дни не многие ученые ставят под сомнение тот факт, что электроны путешествуют по дыхательным цепям путем квантового туннелирования. Это позволяет отнести важнейшие реакции покорения энергии в живых и (нефотосинтезирующих) микробных клетках строго к сфере квантовой биологии (о фотосинтезирующих клетках мы будем говорить в следующей главе). Однако электроны очень легкие, даже по меркам квантового мира, а их поведение явно имеет волновую природу. Таким образом, их движение нельзя описывать как хаотичное толкание и отскакивание друг от друга по аналогии с классическими маленькими частицами, несмотря на то что во многих стандартных работах по биохимии, опирающихся на планетарную модель атома, их движение описывается именно так. Намного более обоснованными и подходящими являются представления об электронах в атоме как о расфокусированном волновом облаке «электронности», которое окружает крошечное ядро, — «облаке вероятности», о котором мы говорили в главе 1. Таким образом, нет ничего удивительного в том, что электронные волны способны проходить сквозь энергетические барьеры, словно звуковые волны сквозь стены (см. главу 1), даже в биологических системах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джонджо МакФадден читать все книги автора по порядку

Джонджо МакФадден - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жизнь на грани отзывы


Отзывы читателей о книге Жизнь на грани, автор: Джонджо МакФадден. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x