Джонджо МакФадден - Жизнь на грани

Тут можно читать онлайн Джонджо МакФадден - Жизнь на грани - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биология, издательство Питер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джонджо МакФадден - Жизнь на грани краткое содержание

Жизнь на грани - описание и краткое содержание, автор Джонджо МакФадден, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира. В ней авторы рассматривают как новейшие экспериментальные данные, так и открытия с переднего края науки, и делают это в неповторимо доходчивом стиле. Джим Аль-Халили и Джонджо Макфадден рассказывают о недостающем компоненте квантовой механики; феномене, который лежит в основе этой самой таинственной из наук.

Жизнь на грани - читать онлайн бесплатно полную версию (весь текст целиком)

Жизнь на грани - читать книгу онлайн бесплатно, автор Джонджо МакФадден
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вскоре это станет ясно, однако квантовая когерентность не ограничивается охлажденными комплексами FMO. В 2009 году Йен Мерсер в Университетском колледже Дублина обнаружил квантовое биение в другой бактериальной системе фотосинтеза (или, для краткости, фотосистеме) под названием «светособирающий комплекс II» (LHC2), который очень похож на фотосистему растений, но при нормальных температурах, при которых растения и микробы обычно осуществляют фотосинтез [55] Mercer I. P., El-Taha Y. C., Kajumba N., Marangos J. P., Tisch J. W. G., Gabrielsen M., Cogdell R. J., Springate E. and Turcu E. Instantaneous mapping of coherently coupled electronic transitions and energy transfers in a photosynthetic complex using angle-resolved coherent optical wave-mixing // Physical Review Letters, 2009. — Vol. 102: 5. . Затем, в 2010 году, Грег Шоулз в Университете Онтарио продемонстрировал квантовое биение фотосистемы группы водорослей (которые, в отличие от высших растений, не имеют корней, стеблей и листьев) под названием «криптофиты». Эти водоросли чрезвычайно изобильны, до такой степени, что они связывают столько атмосферного углерода (из атмосферного углекислого газа), как и высшие растения [56] Collini E., Wong C. Y., Wilk K. E., Curmi P. M., Brumer P. and Scholes G. D. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature // Nature, 2010. — Vol. 463: 7281. — P. 644–647. . Примерно в то же время Грег Энджел продемонстрировал квантовое биение в том же комплексе FMO, который изучали в лаборатории Грэма Флеминга, но теперь при намного более высоких, совместимых с жизнью, температурах [57] Panitchayangkoon G., Hayes D., Fransted K. A., Caram J. R., Harel E., Wen J., Blankenship R. E. and Engel G. S. Long-lived quantum coherence in photosynthetic complexes at physiological temperature // Proceedings of the National Academy of Sciences, 2010. — Vol. 107: 29. — P. 12 766–12 770. . В таком случае вы можете решить, что этот замечательный феномен ограничен только бактериями и водорослями, однако Тесса Калхоун и ее коллеги из лаборатории Флеминга в Беркли недавно обнаружили квантовое биение в другой системе LHC2, на этот раз в шпинате [58] Calhoun T. R., Ginsberg N. S., Schlau-Cohen G. S., Cheng Y. C., Ballottari M., Bassi R. and Fleming G. R. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II // Journal of Physical Chemistry B, 2009. — Vol. 113: 51. — P. 16 291–16 295. . LHC2 присутствует во всех высших растениях и содержит 50 % всего хлорофилла на планете.

Прежде чем двигаться дальше, мы кратко опишем, как используется полученная из солнечного света энергия экситона, как описывал Фейнман, чтобы оторвать «этот кислород от углерода… оставляя углерод и воду, чтобы создать субстанцию дерева» — или яблоко.

После того как достаточное количество энергии достигает реакционного центра, пара молекул хлорофилла (под названием Р680) испускает электроны. Мы узнаем немного больше о том, что происходит в реакционном центре, в главе 10, и это потрясающее место, в котором может происходить другой новейший квантовый процесс. Источником этих электронов является вода (которая, как мы помним, выступает одним из ингредиентов в фейнмановском описании фотосинтеза). Как мы выяснили в предыдущей главе, захват электронов из любого вещества называется окислением и именно этот процесс имеет место во время горения. Когда дерево горит на воздухе, например, атомы кислорода отрывают электроны от атомов углерода. Электроны на внешней орбите углерода очень слабо удерживаются, поэтому углерод горит очень легко. Однако в воде они удерживаются очень крепко: системы фотосинтеза уникальны тем, что это единственное место в мире, где вода «сгорает» с выходом электронов [59] Когда мы говорим «сгорание воды», мы, конечно, не имеем в виду, что вода является топливом, как уголь, но мы свободно используем этот термин для описания молекулярного процесса окисления. .

Пока все идет хорошо: сейчас мы имеем источник свободных электронов благодаря энергии, доставленной экситонами в хлорофилл. Далее растение должно послать эти электроны туда, где они будут использованы в работе. Сначала они захватываются описанным переносчиком электронов, НАДФН. Мы уже встречали похожую молекулу, НАДН, в предыдущей главе, где она участвовала в переносе электронов, захваченных от питательных веществ, таких как сахара, к дыхательной цепи ферментов в энергетических клеточных органеллах, митохондриях. Если помните, захваченные электроны, доставленные к митохондриям переносчиком НАДН, затем идут по дыхательной цепи ферментов как своего рода электрический ток, который используется для переноса протонов через мембрану, а обратный поток этих протонов используется для получения клеточного энергоносителя, АТФ. Очень похожий процесс используется для получения АТФ в хлоропластах растений. НАДФН захватывает электрон и переносит его к цепи ферментов, которые подобным образом выносят протоны через мембрану хлоропласта. Обратный поток этих протонов используется для получения молекул АТФ, которые впоследствии могут обеспечивать энергией многие энергозатратные процессы в растительной клетке.

Но действительный процесс фиксации углерода, захват атомов углерода из углекислого газа воздуха и их использование для получения энергоемких органических молекул, таких как сахара, происходит вне тилакоида, но все еще внутри хлоропласта. Этот процесс проходит с участием большой молекулы фермента под названием RuBisCO, вероятно наиболее распространенного белка в мире, так как он предназначен для выполнения величайшей работы: создание практически всей мировой биомассы. Этот фермент связывает атом углерода, оторванный от углекислого газа, в молекулу простого пятиуглеродного сахара под названием рибулозо-1,5-бифосфат для получения шестиуглеродного сахара. Чтобы достичь такого мастерства, необходимо присутствие двух ингредиентов: электронов (доставляемых НАДФН) и источника энергии (АТФ). Оба ингредиента являются продуктами светозависимых процессов фотосинтеза.

Шестиуглеродный сахар, полученный с помощью RuBisCO, немедленно распадается на два трехуглеродных сахара, которые затем связываются между собой множеством различных способов для построения всех биомолекул, лежащих в основе яблони, включая яблоки. Неживые воздух и вода Новой Англии с помощью света и доли квантовой механики становятся живой тканью дерева Новой Англии.

Сравнивая фотосинтез у растений и дыхание (сжигание пищи), которое происходит в наших клетках, описанное в предыдущей главе, вы можете увидеть, что под кожей растения и животные не так различны. Ключевое отличие лежит там, где мы и они храним фундаментальные строительные блоки жизни. И тем и другим необходим углерод, но растения получают его из воздуха, в то время как мы берем его из органических источников, таких как растения. И тем и другим для построения молекул необходимы электроны: мы сжигаем органические молекулы для захвата их электронов, в то время как растения используют свет, чтобы сжигать воду и захватывать ее электроны. И тем и другим необходима энергия: мы получаем ее из высокоэнергетических электронов, которые получаем из нашей пищи, пропуская их по дыхательной цепи; растения захватывают энергию фотонов солнечного света. Каждый из этих процессов включает движение фундаментальных частиц, которые руководствуются квантовыми правилами. Кажется, что жизнь укрощает квантовые процессы, чтобы обеспечить и свое продолжение, и продолжение самих квантовых процессов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джонджо МакФадден читать все книги автора по порядку

Джонджо МакФадден - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жизнь на грани отзывы


Отзывы читателей о книге Жизнь на грани, автор: Джонджо МакФадден. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x