Джонджо МакФадден - Жизнь на грани

Тут можно читать онлайн Джонджо МакФадден - Жизнь на грани - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биология, издательство Питер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джонджо МакФадден - Жизнь на грани краткое содержание

Жизнь на грани - описание и краткое содержание, автор Джонджо МакФадден, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира. В ней авторы рассматривают как новейшие экспериментальные данные, так и открытия с переднего края науки, и делают это в неповторимо доходчивом стиле. Джим Аль-Халили и Джонджо Макфадден рассказывают о недостающем компоненте квантовой механики; феномене, который лежит в основе этой самой таинственной из наук.

Жизнь на грани - читать онлайн бесплатно полную версию (весь текст целиком)

Жизнь на грани - читать книгу онлайн бесплатно, автор Джонджо МакФадден
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«Упругое» туннелирование электрона от донора к акцептору возможно при одном важном условии — наличии на акцепторе свободной точки с энергией, совпадающей с энергией электрона. Если ближайшая доступная для электрона точка акцептора характеризуется меньшей энергией, тогда электрону необходимо утратить часть собственной энергии, чтобы совершить прыжок. Такой процесс называется «неупругим» туннелированием. Ненужная энергия должна быть направлена куда-либо, иначе электрон не сможет совершить туннелирование. Если между пластинами помещается некое вещество, электрон может совершать скачок от донора к акцептору, передавая этому веществу лишнюю энергию. Это возможно до тех пор, пока молекулы вещества, расположенного между пластинами, имеют связи, совершающие колебания на частоте, соответствующей сообщаемой энергии. Избавившись таким образом от лишней энергии, электроны, совершающие «неупругое» туннелирование, попадают на пластину-акцептор с меньшим количеством энергии. Устанавливая различия между количеством энергии электронов, покидающих пластину-донор, и количеством энергии прибывающих на акцептор частиц, туннельная спектроскопия «неупруго» рассеянных электронов помогает определить свойства и природу молекулярных связей химического вещества.

Вернемся к аналогиям из мира музыки. Если вы когда-нибудь играли на струнном инструменте, вы должны знать, что извлечь звук из струны можно, даже не касаясь ее. Мы имеем в виду явление звукового резонанса. Этот «фокус» можно продемонстрировать, например, во время настройки гитары. Если вы поместите маленький кусочек тонкой бумаги на одну из струн, а затем возьмете ноту, соответствующую данной струне, на соседней, вы увидите, что бумажка упадет со струны, которой вы даже не коснулись. Это происходит потому, что в случае точной настройки струна, которую вы дергаете, передает воздуху колебания, а воздух, в свою очередь, передает колебания соседней струне. Возникает резонанс колебаний соседних струн. При «неупругом» туннелировании электрон перескакивает на пластину-донор, если в составе молекул вещества, помещенного между пластинами, окажется химическая связь, совершающая колебания с той частотой, которая необходима частице для совершения скачка. На самом деле электрон, совершающий туннелирование, теряет энергию в ходе дергания молекулярной связи во время квантового скачка между пластинами.

Турин предположил, что обонятельные рецепторы функционируют подобным образом, только роль обеих пластин и щели между ними выполняет одна-единственная молекула — собственно обонятельный рецептор. Он представил электрон, изначально расположенный на донорской стороне молекулы рецептора. Как и при «неупругом» туннелировании, электрон мог бы совершить скачок на сторону акцептора в пределах той же молекулы, но, как предположил Турин, частице мешало несовпадение энергий двух сторон молекулы. Однако если рецептор захватывает молекулу запаха, которая имеет химическую связь, совершающую колебания с подходящей частотой, тогда электрон способен совершить прыжок от донора к акцептору посредством туннелирования, одновременно передавая некоторое количество энергии молекуле запаха, «дернув» за одну из ее химических связей. Турин также предположил, что электрон, совершивший туннелирование и находящийся теперь на стороне акцептора, запускает молекулярный снаряд — G-белок, приводящий в действие обонятельный нейрон, который отправляет сигнал прямо в мозг, после чего мы наконец «ощущаем» запах, скажем, апельсина.

Турину удалось обнаружить множество косвенных доказательств своей квантовой теории колебаний. К примеру, как уже было сказано, для веществ, содержащих сероводородную связь, характерен резкий запах протухших яиц. В молекулах данных веществ содержится молекулярная связь S — H, совершающая колебания с частотой 76 терагерц (76 триллионов колебаний в секунду). В рамках теории Турина выдвигается смелая гипотеза: любое вещество, в молекуле которого обнаруживается химическая связь, совершающая колебания с частотой 76 терагерц, должно обладать запахом протухшего яйца независимо от формы молекул. К сожалению, немногие вещества могут похвастаться химическими связями с подобным спектром колебаний. Турин просмотрел практически всю имеющуюся литературу по спектроскопии в поисках упоминания о молекуле с той же частотой колебаний химической связи. Наконец он обнаружил, что концевые бороводородные связи в составе молекул боранов (бороводородов) совершают колебания с частотой 78 терагерц, близкой к частоте колебаний связи S — H. Так как же пахнут бороводороды? Такой информации в литературе по спектроскопии не нашлось, а сами вещества оказались такой редкостью, что Турин нигде не мог найти образец, чтобы понюхать самому. В статье одного из старых изданий он нашел упоминание о том, что бороводороды имеют отвратительный запах — то же можно сказать и о запахе серы. Таким образом, бораны — единственная на данный момент известная группа веществ, молекулы которых не имеют в своем составе атомов серы, но при этом обладают тем же запахом протухших яиц, что и сероводород. Одним из таких веществ является декаборан, молекулы которого состоят исключительно из атомов бора и водорода (химическая формула B 10H 14).

Итак, Турин совершил открытие: из тысяч веществ, запахи которых известны человеку, такую же вонь, как и сероводород, источает молекула с такой же частотой колебаний химической связи. Это звучало весьма убедительно, поэтому теория колебаний химических связей получила широкую поддержку среди исследователей механизмов обоняния. Как вы помните, парфюмеры на протяжении долгих десятилетий бились над тем, как подобрать молекулярный ключик к тайне запаха. Турину удалось совершить то, чего не сумел добиться ни один химик: предсказать запах вещества, опираясь лишь на теоретические рассуждения. Для химиков это было равносильно тому, как если бы кто-то предсказал запах духов, исходя из формы флакончика. Теория Турина также описывает весьма правдоподобный с биологической точки зрения квантовый механизм, благодаря которому биомолекула способна распознавать молекулярные колебания. Однако теоретически «правдоподобного» механизма недостаточно. Где же кроется истина?

Битва носов

Возникновение теории колебаний сопровождалось очевидными яркими удачами, например в случае с предсказанием запаха декаборана. И все же она сталкивается с некоторыми проблемами, близкими тем подводным камням, которые не смогла обойти теория замка и ключа, — наличием зеркальных изомеров (например, лимонена и дипентена) с различными запахами и одинаковыми спектрами колебаний. Турин решил проверить еще одно предположение, выдвинутое в рамках его теории. Как вы помните, гипотеза о возникновении эффекта туннелирования во время действия фермента (см. главу 3) проверялась путем замены обычного атома водорода на более тяжелые изотопы, например дейтерий, с целью использовать кинетический изотопный эффект. Турин провел похожий эксперимент с запахом ацетофенона , который описывается как «резкий сладкий аромат… напоминающий запах боярышника или цветущего апельсинового дерева». Турин приобрел весьма дорогостоящую партию ацетофенона, в которой каждый восьмой атом водорода в углерод-водородных связях был заменен дейтерием. Чем тяжелее атомы (и чем толще гитарные струны), тем ниже частота их колебаний. Частота колебаний обычной углерод-водородной связи находится в промежутке от 85 до 93 терагерц, однако в случае замены атома водорода дейтерием частота колебаний углерод-водородной связи снижается до 66 терагерц. Таким образом, «дейтеризованное» вещество отличается от вещества, где в связях с углеродом находятся обычные атомы водорода, спектром колебаний. Но отличается ли оно еще и запахом? Перед тем как осторожно понюхать оба вещества, Турин плотно закрыл двери своей лаборатории. Он был уверен в том, что «вещества пахли по-разному; дейтеризованная партия обладала менее сладким запахом, как будто более растворенным» [77] Turin. The Secret of Scent. — P. 176. . Даже после тщательной очистки обоих веществ Турин был убежден, что партия с обычным водородом и партия с дейтерием имеют абсолютно разные запахи. Таким образом, он заявил, что его теория доказана.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джонджо МакФадден читать все книги автора по порядку

Джонджо МакФадден - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жизнь на грани отзывы


Отзывы читателей о книге Жизнь на грани, автор: Джонджо МакФадден. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x