Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века
- Название:Самая главная молекула. От структуры ДНК к биомедицине XXI века
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2017
- Город:Москва
- ISBN:978-5-9614-4522-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века краткое содержание
Самая главная молекула. От структуры ДНК к биомедицине XXI века - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Ну а что же все-таки происходило с петуньями? Почему они теряли окраску в ответ на вторжение дополнительных генов пигмента? Читатель, конечно, уже догадался, в чем было дело: иммунная система петуний ошибочно принимала мРНК белка-пигмента за вторгшуюся вирусную РНК и включала систему РНКи. В результате вырабатывались киРНК, специфичные к мРНК пигмента, что вело к деградации всех мРНК пигмента: пигментный белок переставал вырабатываться вовсе. Иными словами, происходило полное «глушение» экспрессии пигментных генов.
Так невинное занятие цветочками привело к важнейшему открытию – обнаружению иммунной системы у растений, или системы РНКи. Впрочем, вся генетика началась с цветочков (Мендель разводил цветной горошек), так что удивляться не приходится. Нет, все же есть чему удивляться: как же такой важнейший процесс столь долго оставался незамеченным? Может, дело в том, что система РНКи есть только у растений и ее нет ни у прокариот, ни у животных? Действительно, у прокариот нет такой системы, а вот у животных она есть, и у нас с вами тоже. Когда такое выяснилось в начале 2000-х годов, пошли разговоры об очередной революции в молекулярной биологии. Впрочем, почему только разговоры? Сейчас уже ясно, что эта революция в самом разгаре. Но об этом позже – в самом конце книги.
Приобретенный иммунитет у бактерий
Не успели улечься страсти вокруг открытия системы РНК-интерференции у растений и животных, как в 2013 году грянула новая технологическая революция, по своим масштабам превзошедшая все предыдущие прорывы за всю историю молекулярной биологии, начиная с ее возникновения в 1953 году. Об этой революционной технологии редактирования генома мы поговорим позже, в главе 10, а сейчас речь пойдет о чисто научном открытии, приведшем к технологическому прорыву, – об открытии приобретенного иммунитета у бактерий.
Вообще, никакого приобретенного иммунитета бактериям иметь категорически не положено. Ведь отдельная бактериальная клетка – это организм, который производит потомство путем простого деления. Если при соприкосновении с конкретным вирусом (вирусы бактерий называются бактериофагами, или просто «фагами») бактерия приобретает иммунитет против заражения этим вирусом, то она передаст этот признак своим потомкам. Но тогда чем способность бактерий передавать приобретенный признак отличается от того, что собака, у которой отрубили хвост, передаст этот признак (иметь короткий хвост) своим потомкам? Послушайте, да это же подлинный ламаркизм или, хуже того, лысенковщина! Это есть не что иное, как наследование благоприобретенных признаков! Утверждать такое – это анафема. Ведь именно то, что благоприобретенные признаки не могут наследоваться, имел в виду великий русский генетик Николай Иванович Вавилов, когда говорил свои знаменитые слова: «На костер пойдем, гореть будем, но от убеждений своих не откажемся». И пошел на костер, и сгорел (точнее, был уморен голодом в заточении).
Интересно, что последний гвоздь в гроб ламаркизма и лысенковщины был забит именно в опытах с бактериями и их вирусами. Эти опыты были проведены в США Сальвадором Лурией и Максом Дельбрюком (тем самым, берлинским учеником Тимофеева-Ресовского и основателем фаговой группы в США, о котором мы уже говорили в главе 1) в 1943 году, и главным образом за эти опыты Лурия и Дельбрюк были удостоены Нобелевской премии по физиологии и медицине за 1969 год. В чем же состояли эти знаменитые опыты, которые, как считалось до самого недавнего времени, раз и навсегда поставили крест на концепции наследования благоприобретенных признаков?
Лурии и Дельбрюку было прекрасно известно, что, если на чашку Петри содержащую и питательный агар, и фаг, убивающий данный штамм, высеять бактерии, подавляющее количество из них погибнет, но отдельные клетки выживут. И исследователи задались вопросом: эти устойчивые клетки есть мутанты, уже присутствовавшие среди нормальных клеток до их соприкосновения с фагом, или малая доля клеток приобрела иммунитет против фага в момент контакта с ним? Иными словами, является устойчивость к фаговой инфекции результатом случайной мутации или это благоприобретенный признак? Чтобы различить эти две возможности, опыт был поставлен следующим образом.

Рис. 23.Схема опыта Лурии-Дельбрюка
Выращенные в питательном бульоне клетки были тщательно перемешаны и разделены на две равные части. Из одной половины клеток, показанной на рис. 23 справа, были при помощи пипетки сразу же взяты пробы определенного объема и высеяны на чашки Петри с агаром и фагом. Вторая половина, та, что слева, была сначала разлита в то же число пробирок, сколько чашек Петри справа, проинкубирована достаточное время, чтобы клетки могли размножиться, и только потом из каждой пробирки, после тщательного перемешивания, была взята своя проба того же объема, что и в случае справа, и высеяна на свою чашку Петри (рис. 23). Затем, дав выжившим клеткам время размножиться, образовавшиеся колонии были посчитаны во всех чашках Петри. Какой результат следовало ожидать в случае мутационной гипотезы, а какой – в случае гипотезы приобретенного иммунитета, т. е. наследования благоприобретенных признаков?
Ясно, что в случае приобретенного иммунитета результат опыта в обоих случаях (левая и правая сторона рис. 23) должен быть один и тот же, ведь иммунитет приобретается в момент контакта между бактерией и фагом, так что манипуляции с клетками до такого контакта значения не имеют.
Так что в случае иммунитета Лурия и Дельбрюк должны были наблюдать примерно одинаковое число колоний в чашках Петри, как в левом случае, так и в правом. Конечно, поскольку иммунитет приобретается случайно, малой частью бактерий, количество колоний в разных чашках должно немного флуктуировать, подчиняясь так называемому пуассоновскому распределению. Если же верна мутационная гипотеза, то пуассоновское распределение должно наблюдаться только для постановки опыта, как в правой части рис. 23; для постановки опыта согласно схеме слева распределение не должно быть пуассоновским. Пуассоновским должно быть в этом случае распределение мутантов по пробиркам. После наращивания бактерий в пробирках и высевания их на чашки Петри распределение колоний должно быть гораздо более широким, чем пуассоновское. В самом деле, можно ожидать, что в каких-то чашках вообще не окажется колоний, но практически не должно быть чашек с одной или несколькими колониями, так как, даже если в пробирке оказалась только одна мутантная клетка, она многократно размножилась за время инкубации и высевание даст множество колоний.
Читать дальшеИнтервал:
Закладка: