Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века

Тут можно читать онлайн Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века - бесплатно ознакомительный отрывок. Жанр: Биология, издательство Литагент Альпина, год 2017. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Самая главная молекула. От структуры ДНК к биомедицине XXI века
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-9614-4522-0
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Максим Франк-Каменецкий - Самая главная молекула. От структуры ДНК к биомедицине XXI века краткое содержание

Самая главная молекула. От структуры ДНК к биомедицине XXI века - описание и краткое содержание, автор Максим Франк-Каменецкий, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Из всего, что нас окружает, самой необъяснимой кажется жизнь. Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь из поколения в поколение? Эти вопросы стары как мир, но только во второй половине XX века удалось впервые получить на них ответы, которые, в сущности, оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, рассказывается в этой книге. Центральное место в науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: «Что такое жизнь?», занимает молекула ДНК. О ней главным образом и пойдет речь. Большое внимание автор уделил тем вопросам, при решении которых особенно важную роль играют физика и математика. Это отличает данную книгу от множества других, посвященных ДНК.

Самая главная молекула. От структуры ДНК к биомедицине XXI века - читать онлайн бесплатно ознакомительный отрывок

Самая главная молекула. От структуры ДНК к биомедицине XXI века - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Максим Франк-Каменецкий
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В клетке ДНК связана с какими-то белками, в частности, с теми, которые раскрывают двойную спираль и расплетают в этих местах две цепи. Но из-за расплетения среднее для всей молекулы значение γ 0становится больше, чем для чистой ДНК, не связанной с белками. Поэтому, если ДНК все-таки не закручена в клетке в сверхспираль, то очистка ее от белков приведет к тому, что она обязательно перейдет в сверхспирализованное состояние с отрицательным знаком.

Таково было простейшее объяснение сверхспирализации ДНК, сложившееся к началу 1970-х годов. Оно означало, что сверхспирализация не имеет никакого биологического значения.

В начале 1970-х годов проблемой сверхспирализации ДНК занимались практически только две группы, обе в США, – Джерома Винограда (Калифорнийский технологический институт), открывшего само явление сверхспирализации, и Джеймса Уонга (Гарвард). Кому хотелось изучать свойство ДНК, явно не имеющее биологического значения? Собственно, и Уонг подключился только потому, что решил выяснить, могут ли те или иные белки расплетать ДНК.

Опыты Уонга требовали времени и усилий: надо было в зкДНК разрывать одну из цепей, создавать комплекс между белком и разорванной ДНК, затем залечивать разрыв лигазой, отделять ДНК от белка и, наконец, измерять величину сверхспирализации. Хорошо бы иметь один белок, который и рвет цепь, и залечивает разрыв, думал Уонг. Насколько меньше было бы возни. И он принялся искать такой белок в клеточных экстрактах кишечной палочки.

Что могло помочь в поисках? Приметы были ясны: если нужный белок существует, то с его помощью сверхспирализованная ДНК должна превращаться в кольцевую замкнутую молекулу, не имеющую сверхвитков. В самом деле, как только белок разорвет одну из цепей, напряжение в ДНК немедленно пропадет, т. е. сверхспираль исчезнет. А когда белок залечит разрыв, то получится ДНК, у которой Lk = N / γ 0. Иными словами, шла охота за ферментом, способным менять величину Lk .

Уонгу удалось обнаружить такой фермент. Этот белок оказался родоначальником обширного класса ферментов, меняющих топологические свойства ДНК и названных впоследствии топоизомеразами . Обнаруженный Уонгом первый представитель этого нового класса ферментов получил название топоизомераза I. Открытие топоизомераз заставило усомниться в том, что сверхспирализация никчемна в биологическом смысле. Ведь если есть ферменты, меняющие топологию, то, значит, сама топология клетке не совсем безразлична.

Начался планомерный поиск топоизомераз. И вот в 1976 году группа Мартина Геллерта (Национальный институт здравоохранения, США) обнаружила фермент, который при помощи АТФ (этого универсального «аккумулятора» энергии в клетке) производит действие, обратное тому, что проделывает белок, открытый Уонгом. Этот фермент, названный ДНК-гиразой, превращает расслабленную несверхспирализованную зкДНК в сверхспираль. И вот тут-то выяснилось, что если вывести из строя гиразу, то самые важные процессы в клетке, в частности репликация ДНК, полностью прекращаются. Стало ясно, что сверхспирализация – жизненно важное для клетки состояние ДНК.

Зачем нужна сверхспирализация?

Сверхспирализация – важнейший пример того, как физическое состояние молекулы ДНК влияет на ее работу в клетке. Всю эту проблему интенсивно изучают специалисты самых разных профилей – от медиков до математиков. Поэтому неудивительно, что существует множество гипотез о роли сверхспирализации в работе клетки. Мы остановимся более подробно на одной из них, которая кажется сейчас наиболее простой и правдоподобной.

Гипотеза эта возникла потому, что было прямо доказано: для того чтобы начать удваиваться, молекуле ДНК обязательно надо закрутиться в сверхспираль, но для самого процесса репликации сверхспираль вовсе не нужна. Более того, иногда перед репликацией одна из цепей кольцевой замкнутой ДНК рвется, причем этот разрыв делает специальный белок и только в том случае, если ДНК сверхспирализована. Получается какая-то бессмыслица – клетка затрачивает усилия, чтобы превратить ДНК в сверхспираль с помощью одного белка (ДНК-гиразы) для того, чтобы другой белок эту сверхспирализацию немедленно ликвидировал. Но факты неопровержимы – без этого загадочного ритуала репликация не начнется, во всяком случае в тех объектах, которые были исследованы (например, в бактериофаге ФХ174).

Объяснение всему этому может быть, по-видимому, только одно. Описанный ритуал – не что иное, как проверка ДНК на целостность сахарофосфатной цепи, своеобразный ОТК для ДНК. В самом деле, не следует забывать, что ДНК в клетке постоянно повреждается – облучением, химическими агентами, собственными нуклеазами, тепловым движением, в конце концов. В клетке есть целый арсенал средств, называемый репарирующей системой, для залечивания этих повреждений. В главе 3 мы рассказывали о том, как эта репарирующая система залечивает повреждения, наносимые ультрафиолетовыми лучами. Репарирующая система располагает множеством ферментов. Одни, нуклеазы, рвут цепь ДНК вблизи поврежденного нуклеотида. Другие ферменты расширяют брешь, удаляя поврежденное звено. Но генетическая информация при этом сохраняется, ведь есть вторая, комплементарная цепь, по которой ДНК-полимераза I вновь наращивает удаленную часть цепи ДНК.

Итак, в клетке постоянно залечиваются раны, наносимые молекуле ДНК, причем сплошь и рядом приходится прибегать к хирургическому вмешательству – разрывать одну из цепей двойной спирали. Что произойдет, если одновременно с ремонтом начнется репликация? Дойдя до разрыва цепи, ДНК-полимераза, ведущая репликацию, остановится: не сможет идти ни тот, ни другой процесс. Это катастрофа. Значит, репликацию следует начинать, только до конца убедившись, что ремонт завершен, а судить об этом можно по тому, что обе цепи ДНК целы. Но как это проверить? Пустить какой-нибудь белок вдоль ДНК, чтобы он ее прощупывал? Но на ДНК могут сидеть другие белки, которые не пропустят «ощупывающий» белок, и потом этот контроль очень долог. Где гарантия, что, пока будет проверяться целостность цепи звено за звеном, не произойдет новое повреждение? Нет, такой путь не годится.

И вот тут-то на помощь приходит сверхспирализация. Ведь она возможна только в той ДНК, в которой обе цепи на всем протяжении целы. А убедиться в наличии сверхспирали очень просто – в сверхспиральной ДНК гораздо легче развести две комплементарные цепочки, т. е. раскрыть участок двойной спирали. Раскрытие подобно действию расплетающего белка – оно снимает напряжение в отрицательно сверхспирализованной ДНК. Итак, белку, которому поручен контроль, следует связаться с нужным участком ДНК (он узнает его по определенной последовательности нуклеотидов) и попробовать развести в этом месте комплементарные цепи. Если получилось, то с этого места быстро-быстро начинается репликация. Если развести цепи не удалось, то придется подождать – ДНК еще не готова к воспроизведению.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Максим Франк-Каменецкий читать все книги автора по порядку

Максим Франк-Каменецкий - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Самая главная молекула. От структуры ДНК к биомедицине XXI века отзывы


Отзывы читателей о книге Самая главная молекула. От структуры ДНК к биомедицине XXI века, автор: Максим Франк-Каменецкий. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x