Михаил Бухар - Популярно о микробиологии

Тут можно читать онлайн Михаил Бухар - Популярно о микробиологии - бесплатно ознакомительный отрывок. Жанр: Биология, издательство Альпина нон-фикшн, год 2012. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярно о микробиологии
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-91671-198-1
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Михаил Бухар - Популярно о микробиологии краткое содержание

Популярно о микробиологии - описание и краткое содержание, автор Михаил Бухар, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.
Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.

Популярно о микробиологии - читать онлайн бесплатно ознакомительный отрывок

Популярно о микробиологии - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Михаил Бухар
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Высокая плотность упаковки устройств в интегральных схемах приводит к их перегреву, поэтому приходится отводить образующееся тепло с помощью различных, иногда довольно сложных приспособлений.

Требования высокой плотности, ограничение общего числа рабочих элементов и тепловые затруднения, о которых мы только что говорили, привели к созданию нового класса полупроводниковых устройств — твердотельных структур.

На сегодняшний день они представляют одну из наиболее быстро развивающихся областей физики твердого тела. Композиционная твердотельная сверхструктура — это периодическая решетка чередующихся сверхтонких слоев двух различных полупроводников. Толщина каждого слоя — не более нескольких сотен атомов. Сложные электронные процессы, протекающие в этих структурах (мы не будем здесь вдаваться в их детали), позволят использовать их как новую элементную базу для современных ЭВМ, значительно превосходящую по своим эффективным параметрам даже интегральные схемы. Получение твердотельных структур основано на самой новейшей и совершеннейшей технологии с использованием лазерной техники и сверхчистых веществ.

Несмотря на впечатляющие успехи в области ЭВМ, головной мозг человека продолжает оставаться недосягаемым образцом для создателей и разработчиков электронно-вычислительных машин. И по числу рабочих элементов, и по энергоемкости, и по компактности он оставляет далеко позади лучшие образцы ЭВМ. Достаточно привести всем известные характеристики головного мозга: объем — несколько кубических дециметров, потребляемая мощность — несколько ватт, а число рабочих элементов 10–15 млрд!

Однако даже максимально приближенные по своим показателям к головному мозгу электронно-вычислительные машины значительно уступают ему по скорости обработки информации, хотя каждый отдельный его «элемент» (нейрон) работает медленнее. Возникло предположение (впоследствии подтвердившееся), что структура или, как принято говорить, архитектоника ЭВМ устроена хуже. Хотя электронно-вычислительные машины и строились по «образу и подобию» процессов, протекающих по принципу рефлекторной дуги на основе известной триады: входной сигнал — обработка — выходной сигнал, тем не менее несостоятельность этой схемы, особенно при управлении быстро протекающими процессами, заставила физиологов более детально исследовать процессы, происходящие в нашем «персональном компьютере» — головном мозге. Это позёволило обнаружить принципиально новую схему обработки информации.

Оказалось, что рецепторы — источники входных сигналов не ведут себя пассивно, они непрерывно информируют центр о производимой работе, получая в ответ новые сигналы и точно рассчитанные поправки. Согласно концепции академика П. К. Анохина, работа каждого органа и управляющего им центра совершается как бы кольцеобразно, в обстановке полного доверия и взаимной осведомленности. Причем в зависимости от меняющихся условий внешней и внутренней среды тотчас же следует коррекция из центра, и весь кольцевой рефлекторный аппарат перестраивается на новый рабочий режим. По такому принципу параллельной обработки информации функционируют все рефлекторные системы. В соответствии с ним работают и новые образцы ЭВМ, что значительно увеличивает их быстродействие.

«Однако при чем же здесь микроорганизмы?» — спросите вы. Логично предположить, что и у этих биологических систем, стоящих на более низком уровне развития, процессы обработки информации и управления должны быть основаны на таких же принципах. Ведь сам факт их существования и жизнеспособности в изменяющихся условиях свидетельствует о наличии у микроорганизмов практически безынерционных систем обработки информации, хотя и не таких сложных, как головной мозг высших животных.

Как происходят передача и обработка информации в ультраструктуре микробной клетки и какова та элементная база, из которой состоит ее ЭВМ? Ответа пока нет. До сих пор не удалось обнаружить среди разнообразных субклеточных структур микроорганизма такие, которые могли бы выполнять функции блоков обработки информации. Однако эти функции каким-то образом успешно выполняются в клетке. Можно предположить, что здесь не обошлось без одного из основных ее компонентов — белков.

Еще в 1941 г. американский биохимик А. Сент-Дьерди предположил, что в них содержатся делокализованные электроны, которые могут обеспечить передачу в другие места изменений, начавшихся в каком-либо месте белковой макромолекулы. Таким образом, эти переходы аналогичны тем, которые хорошо известны в физике полупроводников и на основе которых функционируют многие электронные приборы и устройства. По мнению французского ученого Л. Бриллюэна, белки также могут служить полупроводниками электронного типа благодаря присутствию в них боковых цепей, действующих так же, как примеси в полупроводниках.

Когда мы говорили о композиционных структурах, предсказанных квантовой теорией твердого тела и воплощенных в металле и керамике, то следовало заметить, что у них есть близкие аналоги в живой природе. Это — клеточные мембраны. По структуре они тоже представляют собой «сэндвичи», но не из тонких слоев различных металлов, а из тончайших слоев белков и липидов.

Не исключено, что это, как принято говорить в биологии, морфологическое сходство ведет к функциональной общности: такие структуры способны играть роль элементов, служащих вентилями в электронных схемах, т. е. выполнять функции полупроводников.

В последнее время в научной и коммерческой литературе появились сообщения о разработке и использовании на базе достижений биотехнологии и микроэлектроники новых структурных элементов ЭВМ — биочипов. Специалисты японской фирмы Suntory Ltd. полагают, что емкость их памяти примерно в 1 млрд раз больше, чем у полупроводников на базе кремния.

Найти микроструктуры, выполняющие роль элементной базы, изучить архитектонику их компоновки в системе СИС (сложных интегральных схем) и условия, обеспечивающие стабильность, надежность и мизерную энергоемкость этих биологических микроЭВМ, разработать биотехнологические схемы их синтеза — вот задача для микробиологов, биотехнологов, специалистов в области микроэлектроники; задача, поставленная американским ученым Норбертом Винером и взятая в качестве эпиграфа к этой главе.

И это не фантастика. В этом направлении уже сделаны первые шаги, и открывающиеся перспективы поистине удивительны! Успехи генетической инженерии позволяют получать в больших количествах белки определенной структуры, обладающие специфическими свойствами. Не исключено, что, применяя методы генной инженерии, можно будет получать структуры, напоминающие полупроводниковые, а используя методы их иммобилизации, — стабилизированные биоструктуры, которые могут служить аналогами сложных интегральных схем и быть основой элементной базы последующих поколений ЭВМ.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Михаил Бухар читать все книги автора по порядку

Михаил Бухар - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярно о микробиологии отзывы


Отзывы читателей о книге Популярно о микробиологии, автор: Михаил Бухар. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x