Александр Марков - Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
- Название:Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
- Автор:
- Жанр:
- Издательство:Астрель, Corpus
- Год:2010
- Город:Москва
- ISBN:978-5-271-24663-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Марков - Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы краткое содержание
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
градуалистическая эволюция— постепенная, идущая путем отбора небольших изменений. См. раздел «Постепенно или скачками?» в главе 6, стр. 357.
дивергенция— расхождение видов (или признаков) в процессе эволюции. Глава 8, стр. 428.
диплоидный— содержащий двойной набор хромосом. Диплоидная клетка образуется либо в результате деления (митоза) другой диплоидной клетки, либо в результате слияния двух гаплоидных половых клеток (оплодотворение).
ДНК— биополимер, молекула которого представляет собой цепочку из множества последовательно соединенных дезоксирибонуклеотидов (см. врезку «ДНК и РНК — хранители наследственной информации» в главе 1). Обычно две комплементарные цепочки ДНК объединяются вместе, образуя двойную спираль.
ДНК-полимераза— фермент, осуществляющий репликацию (копирование, размножение) молекул ДНК. Стр. 78.
домен— функциональная часть (блок) белковой молекулы. Белковая молекула может содержать один или несколько разных доменов, выполняющих разные функции.
зигота— диплоидная клетка, образовавшаяся из слияния двух гаплоидных половых клеток. Например, оплодотворенное яйцо.
значимые и незначимые нуклеотидные замены— как известно, каждая аминокислота в молекуле белка кодируется тремя нуклеотидами в молекуле ДНК. Однако для построения белков используется всего 20 аминокислот, тогда как возможных триплетов — комбинаций из трех нуклеотидов — насчитывается 64. Поэтому говорят, что генетический код «избыточен». В результате большинство аминокислот кодируется не одним, а несколькими разными триплетами. Из-за этого некоторые нуклеотидные замены в кодирующей части гена не приводят к замене аминокислоты в белке (см. генетический код). Такие замены называют незначимыми или синонимичными.
иммуноглобулины— обширная группа (надсемейство) белков, основная функция которых состоит в специфическом распознавании и связывании других молекул. К этой группе относятся, в частности, антитела. Белки надсемейства иммуноглобулинов играют важную роль не только в иммунной системе, но и в межклеточных взаимодействиях, поддержании целостности многоклеточного организма, индивидуальном развитии и т. д. Глава 9, раздел «Взаимное узнавание», стр. 488.
импринтинг геномный— модификация наследственного материала без изменения первичной структуры (последовательности нуклеотидов) ДНК, в частности, путем метилирования нуклеотидов. Может приводить к изменению активности тех или иных генов и, как следствие, к наследственному изменению фенотипа без изменений генотипа. Глава 8, стр. 458.
ингибитор— вещество, останавливающее (замедляющее, подавляющее) какой-либо химический (биохимический, биологический) процесс.
интроны— некодирующие вставки в генах. Обильны в генах эукариот, редки в генах прокариот. Во время транскрипции ген считывается целиком, вместе с интронами. Получившаяся «незрелая» матричная РНК подвергается сплайсингу («нарезке»), в ходе которого интроны удаляются, стр. 153.
канализированность эволюции— ограниченность числа возможных («разрешенных») эволюционных преобразований, придающая эволюции частичную предсказуемость. См. сюжет «Пути эволюции предопределены на молекулярном уровне» в главе 4, стр. 213.
кодон— последовательность из трех нуклеотидов, кодирующая одну аминокислоту (см. генетический код).
комплементарность— свойство нуклеотидов, из которых состоят ДНК и РНК, связываться только с определенными (комплементарными) нуклеотидами другой (противоположной) цепочки ДНК или РНК. Нуклеотид А связывается с Т (или У, если речь идет об РНК), Г — с Ц. Свойство комплементарности лежит в основе процессов репликации (копирования) ДНК и РНК, транскрипции, трансляции и др. См. врезку «ДНК и РНК — хранители наследственной информации» в главе 1. Глава 7, стр. 374.
конверсия генов— целенаправленное изменение генов (их нуклеотидных последовательностей), приводящее к превращению одного аллеля в другой. Может осуществляться, например, путем замены участков гена другими, похожими, участками или с помощью перекомбинирования генетических фрагментов-заготовок. Стр. 390.
конъюгация— своеобразный половой процесс у прокариот и инфузорий. Два одноклеточных организма соединяются, обмениваются наследственным материалом и расходятся. Глава 7, раздел «Контролируемая перестройка генома у инфузорий». Стр. 392.
креационизм— вера в божественное сотворение живых существ. Существует очень много версий креационизма, но почти все они сходятся в одном — в отрицании факта эволюции. Существуют версии, претендующие на «научность», однако в действительности креационизм не является научной теорией, в частности из-за отсутствия проверяемых следствий. Подробная и весьма корректная информация о креационизме приведена в статье «креационизм» в русской Википедии: http://ru.wikipedia.org/wiki/Креационизм.
мейоз— «редукционное деление» эукариотической клетки, в результате которого число хромосом сокращается вдвое. Из диплоидной родительской клетки (с двойным набором хромосом) получаются четыре гаплоидных клетки с одинарным набором хромосом. У животных таким путем образуются половые клетки — яйцеклетки и сперматозоиды. Стр. 95, 216.
мембрана (клеточная, или плазматическая) — полупроницаемая оболочка, окружающая живую клетку. У всех живых существ основу мембраны составляют два слоя молекул из класса липидов (жиров), но липиды эти могут быть разными. У бактерий и эукариот мембранные липиды представляют собой эфиры глицерина и жирных кислот, а у архей — эфиры глицерина и терпеноидных спиртов. Стр. 67.
метаболизм— обмен веществ. Совокупность всех химических процессов, происходящих в организме.
метагеномный анализ— метод изучения разнообразия организмов (чаще всего — микробов). Берут пробу из какой-либо среды (будь то морская вода или содержимое человеческого кишечника), выделяют оттуда всю ДНК и секвенируют (определяют последовательность нуклеотидов). Затем по этим нуклеотидным последовательностям, используя имеющиеся генетические банки данных, определяют, какие организмы присутствуют в пробе. См. сюжет «Кишечная микрофлора превращает человека в „сверхорганизм“» в главе 3, стр. 171.
метаногены— хемоавтотрофные прокариоты (археи), выделяющие в качестве конечного продукта жизнедеятельности метан (CH 4). Глава 2, стр. 101.
метилирование ДНК— прикрепление метильных групп (-CH 3) к некоторым нуклеотидам в молекуле ДНК, осуществляемое специальными ферментами ДНК-метилтрансферазами. Используется, в частности, как один из способов регуляции активности генов. Глава 7, стр. 399. Глава 8, стр. 457.
Читать дальшеИнтервал:
Закладка: