Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции
- Название:Логика случая. О природе и происхождении биологической эволюции
- Автор:
- Жанр:
- Издательство:Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9
- Год:2014
- Город:Москва
- ISBN:978-5-227-04982-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции краткое содержание
В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эво люции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.
Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход – вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.
Логика случая. О природе и происхождении биологической эволюции - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
3. Спонтанная диссоциация или распад R высвобождает пептид P обратно в ячейку. Если P обладает неспецифической способностью стимулировать и (или) стабилизировать рибозимы, он может быть захвачен другим рибозимом E , катализирующим другую реакцию ( U → V ). Интересным примером мог бы быть пептид, содержащий пару отрицательно заряженных аминокислот и образующий комплекс с двухвалентным катионом, аналогично разнообразным, неродственным современным ферментам метаболизма нуклеиновых кислот (полимеразы, нуклеазы, лигазы, топоизомеразы, и др.). Если P повышает каталитическую активность E , он снова увеличивает приспособленность всего ансамбля.
4. В то время как активность E по-прежнему зависит от наличия P , копия R ( R L ) может потерять исходную функцию катализа X → Y при сопутствующем усилении функции аминокислотной лигазы, в то время как другая копия ( R 0 ) сохраняет исходную функцию, все еще усиливаемую пептидом Р . Заметим, что это типичная субфункционализация, основной путь эволюции дуплицированных генов в современных геномах (см. гл. 8). Субфункционализация, возможно, была важна уже в мире РНК, когда выгода усиленного катализа R 0 и Е перевешивала увеличение затрат на репликацию.
5. Повсеместный катализ при помощи пептидов в разделенной на ячейки добиологической системе делает аминокислоты ценным ресурсом для эволюционирующих эгоистичных кооперативов. Учитывая, что аминокислоты являются небольшими полярными молекулами, способными диффундировать сквозь стенки ячеек, накопление аминокислот в ячейке должно было быть полезным. Таким образом, связывающие аминокислоты малые РНК ( T ) развиваются под эволюционным давлением в сторону накопления аминокислот; эти молекулы могут рассматриваться как аналоги связывающих аминокислоты аптамеров (см. предыдущий раздел). Первоначально РНК T связывают аминокислоты неспецифически. Затем постепенно эволюционирует автокаталитическое аминоацилирование 3’-конца РНК T , что приводит к увеличению сродства к аминокислотам и избирательности в их связывании. Как и в случае пептид-лигазы на шаге 2, этой реакции необходим источник энергии; в этом качестве выступают активированные производные аминокислот, такие как аминоацил-аденилаты.
6. Различные виды РНК T , избирательно связывающие разные аминокислоты, эволюционируют путем дупликации и диверсификации, с сохранением вариантов под давлением отбора в сторону эффективного накопления широкого арсенала аминокислот. Детали связывания аминокислот РНК T будут разниться в зависимости от того, принимается ли гипотеза избирательного распознавания аминокислот специфическими (анти)кодонами. Если такого избирательного распознавания нет, то рассматривается сценарий «застывшей случайности», при котором сайт связывания в РНК T не имеет сродства к кодону или антикодону, а последовательность экспонированной петли (предтечи антикодонной петли) случайна. Независимо от конкретной модели (даже если принимается застывшая случайность), данный шаг, устанавливающий соответствие между аминокислотами и тринуклеотидами, является критически важным для становления генетического кода.
7. Рибозим R L развивает способность связывать комплексы аминоацил – РНК T , а не отдельные аминокислоты, что приводит к большей стабильности и пространственной точности связи. Главная биохимическая активность R L смещается от лигирования аминокислот к транспептидации (передача растущего пептида от одного вида РНК T к другому), что приводит, благодаря высокой энергии связи аминоацил-РНК, к увеличению выхода пептидов. Примечательно, что 50S субъединица бактериальной рибосомы, в качестве предка которой предполагается рибозим R L , может катализировать реакцию транспептидации со скоростью, сравнимой со скоростью полной рибосомы (Wohlgemuth et al., 2006).
8. Эволюционирует вспомогательная субъединица РНК R S под давлением отбора в сторону повышения эффективности связи и точности расположения комплекса аминоацил- T на R L . Механизм распознавания РНК T переходит от слабоизбирательного взаимодействия между РНК T и R L к избирательному спариванию оснований между протоантикодонной петлей T и РНК R S . Этот шаг является решающим в возникновении полноценной трансляции, механизма, основанного на адаптерах (прото-тРНК, РНК T в этой модели), сопрягающих аминокислоты с соответствующими им кодонами.
9. Поскольку происхождение тРНК всех специфичностей от единого предка очевидно, эволюционный путь от набора примитивных РНК T к современным тРНК требует специального объяснения. На описанных выше ранних этапах эволюции системы трансляции различные виды РНК T могли эволюционировать почти параллельными конвергентными путями. Тем не менее общее происхождение тРНК подразумевает последующее «бутылочное горлышко», через которое прошел только один победитель, молекула в форме «L» с акцепторным триплетом C–C-A на 3’-конце. Давление отбора при этом эволюционном «захвате» могло происходить в сторону пространственной комплементарности и усиленного взаимодействия между аминоацилированной РНК T и пептидил-трансферазой R L . Такой отбор изначально действовал на единственную РНК T , возможно имевшую сродство к наиболее распространенной аминокислоте. Впоследствии остальные тРНК должны были эволюционировать путем дупликации и специализации.
10. Следующим шагом в эволюции системы трансляции могло быть физическое отделение матричной цепи M от R S , в результате чего произошло дальнейшее разделение функций кодирования и катализа. В этот момент нить M освобождается от эволюционных ограничений, связанных с функциями катализа и связывания в первичной трансляции, поскольку эти функции перешли на физически различные молекулы РНК R L и R S и прото-тРНК. Единственным требованием к M остается ее способность принимать растянутую конформацию для размещения спаренных оснований кодона и антикодона при связывании аминоацил- T РНК. Эволюционные преимущества такого разделения очевидны: промежуточный ассоциат R S R L (который, на данный момент, можно обоснованно назвать проторибосомой ) в присутствии в ячейке различных олиго– и полинуклеотидов обеспечит синтез все большего разнообразия пептидов, расширяя, таким образом, каталитические возможности ансамбля. Кроме того, этот шаг позволяет отбору действовать в сторону увеличения потенциала репликации (в частности, появления высокоспецифичных сайтов узнавания репликазы) тех видов M , которые кодируют полезные пептиды, приводя к повышению концентрации этих видов РНК в ячейке. По сути дела, в эгоистичном кооперативе запускается разновидность цикла Дарвина – Эйгена.
Читать дальшеИнтервал:
Закладка: