Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции

Тут можно читать онлайн Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции - бесплатно ознакомительный отрывок. Жанр: Биология, издательство Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Логика случая. О природе и происхождении биологической эволюции
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-227-04982-7
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции краткое содержание

Логика случая. О природе и происхождении биологической эволюции - описание и краткое содержание, автор Евгений Кунин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эво люции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.

Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход – вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Логика случая. О природе и происхождении биологической эволюции - читать онлайн бесплатно ознакомительный отрывок

Логика случая. О природе и происхождении биологической эволюции - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Евгений Кунин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 38 Распределение отношения Ka Ks в геномах прокариот и эукариот - фото 17

Рис. 3–8. Распределение отношения Ka / Ks в геномах прокариот и эукариот. Salinispora sp .: вычислено по ортологам в S. arenicola CNS-205 и S. tropica CNB-440 (актинобактерии). Homo sapiens : вычислено по ортологам в H. sapiens и Macaca mulatta (приматы). Значения Ка и Ks оценены с использованием программного обеспечения PAML (Yang, 2007). График в логарифмических координатах по оси абсцисс; ФПВ обозначает функцию плотности вероятности.

Рис 39 Схематическая сводка эволюционных ограничений действующих на - фото 18

Рис. 3–9. Схематическая сводка эволюционных ограничений, действующих на различные классы геномных сайтов.

Одноклеточные эукариоты, напоминающие прокариот общей архитектурой генома, демонстрируют примерно одинаковые распределения эволюционных ограничений, хотя доля очевидно не подверженных ограничениям некодирующих последовательностей в их геномах несколько выше. Геномы многоклеточных эукариот (растений и особенно животных) являют собою разительную противоположность. Эти организмы имеют богатые интронами геномы с длинными межгенными промежутками; существенная, хотя и переменная часть этих некодирующих последовательностей, по-видимому, эволюционирует, не подвергаясь ограничениям. Доля нуклеотидов в геноме, подверженных эволюционным ограничениям, оценивается методами, основанными на критерии Макдональда – Крайтмана (см. табл. 2–2). Полученные оценки существенно отличаются даже между животными: у Drosophila около 70 процентов нуклеотидных сайтов в геноме, в том числе 65 процентов некодирующих участков, по всей видимости, подвержены отбору (в том числе положительному), а у млекопитающих эта доля оказывается в интервале 3–6 процентов (Koonin and Wolf, 2010b). Примечательно, однако, что абсолютное число подверженных отбору сайтов в столь разных по размеру геномах этих животных довольно близко. Напротив, в Arabidopsis , растении с геномом, размером и общей архитектурой сравнимыми с таковыми Drosophila , доля некодирующих подверженных ограничениям участков, по-видимому, существенно ниже.

Резюмируя существующее понимание ограничений, влияющих на различные классы и сайты во всем известном разнообразии геномов (см. рис. 3–9), отметим, что некоторые фундаментальные простые выводы являются бесспорными. В частности, нет никаких сомнений, что несинонимичные сайты в белок-кодирующих последовательностях и последовательности, кодирующие структурные РНК, являются одними из наиболее сильно ограниченных во всех геномах и что характерное распределение ограничений (геномный ландшафт) сильно коррелирует с архитектурой генома (Koonin and Wolf, 2010b). Однако помимо этих основных принципов, и довольно неожиданно, оказывается, что эволюционные режимы сильно различаются даже для некоторых относительно близких таксонов, таких как членистоногие и позвоночные. Чтобы выработать всеобъемлющую картину эволюционных ограничений и давления, формирующих геном, требуется еще множество дополнительных исследований по различным организмам. В последующих главах рассматриваются различные проявления давления отбора, влияющие на разные части генома.

Вселенная генов

Интеграция результатов сравнительной геномики позволяет нам начать строить карту всей «вселенной генов». Глобальная эволюционная устойчивость генов, проявляющаяся прежде всего в сохранении белковых и РНК-последовательностей, стала очевидной в результате самых первых сравнений секвенированных прокариотических и эукариотических геномов: бактерии Haemophilus influenzae и Mycoplasma genitalium , археи Methanocaldococcus jannaschii и эукариотических дрожжей Saccharomyces cerevisiae (Tatusov et al., 1997). Ключевое обобщение сравнительной геномики состоит в том, что гены не просто сохраняются на различных интервалах эволюционного процесса, но и представляют собой дискретные единицы эволюции, а именно ортологичные эволюционные линии (см. табл. 3–1). В сегодняшней коллекции секвенированных геномов найдены ортологи в далеких таксонах для значительного большинства белок-кодирующих генов в каждом геноме. Ярким примером являются недавние результаты секвенирования генома примитивных животных: многочисленные гены Trichoplax и губки связаны ортологичными отношениями с генами млекопитающих и птиц (Putnam et al., 2007; Srivastava et al., 2008; Srivastava et al., 2010). Один из выводов состоит в том, что характерная продолжительность жизни животного гена в этих линиях охватывает по меньшей мере сотни миллионов лет. Многие другие группы животных, такие как насекомые, утеряли многочисленные гены (Koonin et al., 2004), так что судьба одного и того же гена в большинстве случаев отличается в разных линиях, в результате чего мы получаем «пятнистую» филетическую модель. (Как подчеркивается далее в этой главе, множество поистине универсальных генов чрезвычайно мало.) Судьбы конкретных генов в разных линиях зависят как от случайных факторов, так и от различий в давлении отбора (см. гл. 9). Результаты обширного сравнительного анализа геномов растений, грибов и прокариот полностью совместимы с этим выводом. Когда гены в геноме классифицируются по их относительному «возрасту» (то есть филогенетической глубине, на которой обнаруживаются гомологи), наблюдаемое расхождение подобно для удаленных друг от друга организмов, как показано на рис. 3–3 для генетических наборов человека и грибка Aspergillus fumigatus (Wolf et al., 2009), двух организмов, разделенных, по-видимому, миллиардами лет эволюции. Тем не менее распределения генных возрастов поразительно похожи: в каждом случае древних генов, для которых легко обнаруживаются гомологи в далеких таксонах, значительно больше, чем «молодых» генов. Несмотря на частую потерю в отдельных эволюционных линиях, гены характеризуются чрезвычайной долговечностью, и многие из них, возможно, бессмертны [34].

Как обсуждается далее в этой книге (гл. 5 и 7), пути передачи генетической информации у прокариот принципиально отличаются от таковых у эукариот. Тем не менее доли консервативных генов у них примерно равны. В настоящее время эта доля хорошо известна и очень близка у разнообразных бактерий и архей, почти как фундаментальная постоянная: для 70–80 процентов генов ортологи обнаруживаются в далеких организмах (Koonin and Wolf, 2008b; см. рис. 3–4).

Минимальные наборы генов, замещение неортологичных генов (ЗНОГ) и ускользающее незаменимое ядро жизни

Секвенирование геномов симбиотических и паразитических бактерий привело к соблазнительной идее, что их генетический репертуар может быть близок к «наименьшему возможному набору генов», то есть такому, который является необходимым и достаточным для поддержания простой (прокариотической) клетки при самых благоприятных условиях, какие только могут существовать вне других клеток (Fraser et al., 1995; Mushegian and Koonin, 1996b). Последнее условие чрезвычайно важно, поскольку «наименьшим возможным» набор генов будет лишь в отношении к окружающей среде, в которой соответствующий организм существует (или мог бы существовать, в случае «концептуальных» геномов, полученных компьютерными методами). Однако, как только появились первые два полных бактериальных генома, вторым из которых был геном Mycoplasma genitalium [35], лишенной клеточной стенки паразитической бактерии с размером генома всего около 570 генов, возникла очевидная идея, что «истинный» наименьший набор можно естественным образом вывести, сравнивая геномы этих двух существенно различно специализированных бактериальных патогенов (Mushegian and Koonin, 1996b). Точнее, можно было бы ожидать, что ортологичные гены в двух организмах будет представлять собой набор основных биологических функций, которые необходимы для выживания клетки, независимо от уникального образа жизни каждого организма.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Евгений Кунин читать все книги автора по порядку

Евгений Кунин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Логика случая. О природе и происхождении биологической эволюции отзывы


Отзывы читателей о книге Логика случая. О природе и происхождении биологической эволюции, автор: Евгений Кунин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x