Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции
- Название:Логика случая. О природе и происхождении биологической эволюции
- Автор:
- Жанр:
- Издательство:Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9
- Год:2014
- Город:Москва
- ISBN:978-5-227-04982-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции краткое содержание
В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эво люции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.
Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход – вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.
Логика случая. О природе и происхождении биологической эволюции - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
«Разум мне говорит: если можно показать существование многочисленных градаций от простого и несовершенного глаза к глазу сложному и совершенному, причем каждая ступень полезна для ее обладателя, а это не подлежит сомнению; если, далее, глаз когда-либо варьировал и вариации наследовались, а это также несомненно; если, наконец, подобные вариации могли оказаться полезными животному при переменах в условиях его жизни – в таком случае затруднение, возникающее при мысли об образовании сложного и совершенного глаза путем естественного отбора, хотя и непреодолимое для нашего воображения, не может быть признано опровергающим всю теорию» (Darwin, 1859, пер. К. А. Тимирязева, С. Л. Соболя, цит. по изд.: Дарвин Ч. Сочинения. Т. 3. М.: Изд-во АН СССР, 1939).
Повествование Дарвина предлагает одно из возможных концептуальных решений проблемы эволюции организационной сложности. Идею Дарвина можно охарактеризовать как «гипотезу неочевидных промежуточных этапов»: хотя и нельзя сразу представить вероятные промежуточные этапы эволюции по структуре и функциям развитой сложной структуры, такие промежуточные этапы в действительности существовали. Как правило, по крайней мере некоторые из функций этих промежуточных структур могут быть выведены через сравнительное исследование (сравнительная анатомия во времена Дарвина, сравнительная цитология и биохимия в ХХ веке и, вдобавок, сравнительная геномика в наши дни). Эта идея, безусловно, актуальна и плодотворна и, по-видимому, применима, в частности, для глаз и для других сложных органов животных. Однако дарвиновское объяснение представляется менее плодотворным в случае сложных молекулярных структур, как мы видели в главе 7 на примере супрамолекулярных структур эукариотической клетки.
Вторым основным путем к сложной организации является экзаптация, простая, но мощная концепция, предложенная Стивеном Гулдом и Ричардом Левонтином (см. гл. 2): молекулы или комплексы, которые эволюционировали под действием отбора на определенную функцию, нередко приспосабливаются (экзаптируются) для других, хоть и часто механистически сходных, функций (Gould, 1997a). Мы столкнулись с многими бесспорными случаями экзаптации при обсуждении фундаментальных инноваций, возникших в ходе эукариогенеза (см. гл. 7), например комплекса ядерных пор. Экзаптация часто дополняется случайной рекомбинацией уже существующих молекул или устройств, особенно в тех промежутках процесса эволюции, когда рекомбинация стимулируется, как это почти наверняка было при эукариогенезе, потоком генетического материала от симбионта к хозяину. В редких случаях случайные комбинации уже существующих устройств дают новые функции, которые могут решить актуальные проблемы и потому фиксируются отбором.
Третья ключевая идея, которая, возможно, дополняет неадаптивную популяционно-генетическую теорию эволюции генома и может указывать наиболее общий путь к организационной сложности, – это модель конструктивной нейтральной эволюции (КНЭ), предложенная Арлином Стольцфусом в 1999 году (Stoltzfus, 1999) [82]. Суть КНЭ заключена в появлении зависимости между случайно взаимодействующими молекулами, которая делает взаимодействие необходимым и, следовательно, приводит к эволюции организационной сложности. КНЭ является храповиком, как и многие другие эволюционные явления, рассматриваемые в этой книге: появившаяся однажды зависимость становится фактически необратимой . Прекрасным примером КНЭ представляется эволюция сплайсосомы у эукариот (см. гл. 7). По модели КНЭ, случайное расщепление некоторых интронов группы II, вторгшихся в геном хозяина на ранней стадии эукариогенеза, привело к возникновению предков snРНК (активный компонент сплайсосомы) и позволило деградировать самосплайсирующимся концевым структурам всех интронов. В одновременном или последующем процессе случайные взаимодействия РНК-связывающих белков, в частности архейного белка Sm, с интронной РНК позволили деградировать интрон-кодируемой обратной транскриптазе. Очевидно, что эти изменения, создающие зависимости между компонентами эволюционирующей сплайсосомы, по сути необратимы, что формирует храповик и фиксирует эволюционирующую сложную организацию. Цитируя недавнее обобщение этого понятия Майклом Греем и коллегами (Gray et al., 2010), можно сказать, что сложность, появляющаяся по КНЭ, видимо, является не столько нередуцируемой, сколько «непоправимой». Прямой параллелью к модели КНЭ является сценарий субфункционализации для эволюции дупликации генов, предложенный Линчем с коллегами (Lynch and Katju, 2004). Согласно этому сценарию, дупликации генов могут быть зафиксированы без прямой адаптации, поскольку после дупликации новые паралоги могут свободно накапливать дифференциальные мутации, которые инактивируют, в каждом из паралогов, некоторые из многих функций, выполняемых предковым геном. Как только это произойдет, оба паралога становятся незаменимыми – еще один храповой механизм конструктивной нейтральной эволюции. Наблюдения, показывающие практически симметричное ослабление очищающего отбора для паралогов сразу же после дупликации, совместимы с моделью субфункционализации (Kondrashov et al., 2002).
Краткий обзор и перспектива: неадаптивная эволюционная парадигма и переоценка концепции эволюционного успеха
Возникновение и эволюция сложности на уровне генотипа и фенотипа и отношение между ними составляют одну из главных проблем биологии, если не сказать главнейшую. Даже если оставить в стороне на время проблему фактического происхождения весьма существенной сложности, связанной с клеточным уровнем организации (см. гл. 11), нельзя не удивиться, почему эволюция жизни не остановилась на стадии простейших автотрофных прокариот, имеющих 1000–1500 генов. Почему же вместо этого эволюция продолжилась, произведя на свет сложных прокариот, обладающих более чем десятком тысяч генов, и, что еще более поразительно, эукариот, с их огромными, тщательно регулируемыми геномами, многими типами тканей и даже их способностью к созданию математических теорий эволюции?
Традиционный взгляд на эти проблемы явно или неявно сосредоточивается на сложности как на блистательном проявлении адаптации и силы естественного отбора. Соответственно, более сложные организмы традиционно считаются более развитыми, более успешными и, в некотором смысле, более важными, чем простые существа. Однако Стивен Джей Гулд предложил совершенно иную, стохастическую точку зрения на эволюцию сложности, случайное блуждание, метафорически описываемое им как походка пьяницы, вышедшего из бара на улицу [83]: даже если человек под воздействием большого количества алкоголя передвигается совершенно случайно, через какое-то время он в конечном счете окажется довольно далеко от двери бара, например в канаве с другой стороны дороги (Gould, 1997b). То же относится к эволюции сложности: по прошествии достаточного количества времени эволюция, запущенная «со столь простого начала», ожидаемо достигнет высокой сложности в результате чисто стохастических процессов [84]. Эта точка зрения на сложность вполне разумна, но является слишком абстрактной для удовлетворительной теории.
Читать дальшеИнтервал:
Закладка: