Джошуа Ганс - Искусственный интеллект на службе бизнеса

Тут можно читать онлайн Джошуа Ганс - Искусственный интеллект на службе бизнеса - бесплатно ознакомительный отрывок. Жанр: Деловая литература, издательство Литагент МИФ без БК, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Искусственный интеллект на службе бизнеса
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-00117-881-1
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джошуа Ганс - Искусственный интеллект на службе бизнеса краткое содержание

Искусственный интеллект на службе бизнеса - описание и краткое содержание, автор Джошуа Ганс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Прогнозирование – одна из составляющих искусственного интеллекта. На множестве практических примеров авторы рассказывают, как прогнозирование влияет на стратегии бизнеса. Книга поможет сориентироваться в преимуществах технологии и понять, что может значить искусственный интеллект для вас.
На русском языке публикуется впервые.

Искусственный интеллект на службе бизнеса - читать онлайн бесплатно ознакомительный отрывок

Искусственный интеллект на службе бизнеса - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джошуа Ганс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В ноябре 2016 года профессор Юн Рекимото, ученый, IT-специалист из Токийского университета, переводил рассказ в Google-переводчике с японского языка на английский и получил такой результат: «Килиманджаро высота 19 710 футов гора снежный покров, и сказал самая высокая в Африке». На следующий день перевод выглядел уже по-другому: «Килиманджаро гора высотой 19 710 футов покрыта снегом и считается самой высокой в Африке».

Разница невероятная! Прошла всего одна ночь, а вместо корявого автоматического перевода получилось складное предложение, словно вместо недоучки работу делал человек, одинаково хорошо владеющий обоими языками.

Конечно, следует признать, что автору перевода до Хемингуэя далеко, но налицо явный прогресс. Вавилон возродился. И это не случайная перемена и не сбой: Google перекроила машинный переводчик с учетом недавних достижений в области ИИ, о которых мы рассказываем. Если быть точнее, современная программа Google-переводчик базируется на глубоком обучении повышению точности прогнозов.

Перевод заключается в определении японских эквивалентов английских слов и выражений. Прогнозируемые отсутствующие данные – это японские слова и их грамматический порядок. Если на основании данных иностранного языка составлять алгоритм слов и их правильный порядок на известном языке, то перевод получается читабельным. А если сделать все точно, то не всегда можно догадаться, что это перевод.

Компании, не теряя времени, начали коммерческое применение этой волшебной технологии. Например, более 500 миллионов граждан Китая уже пользуются сервисом на основе глубокого обучения, разработанным iFlytek, для перевода, транскрибирования и переписки на родном языке. С его помощью домовладельцы договариваются с иностранными арендаторами, пациенты больниц получают справочную информацию, врачи дают рекомендации, а водители общаются со своими автомобилями [19].

Чем чаще используется ИИ, тем больше он собирает данных и учится и тем лучше становится. А с таким количеством пользователей он совершенствуется очень быстро.

Насколько сейчас прогнозы лучше, чем раньше?

Изменения в программе Google-переводчик иллюстрируют, как машинное обучение (один из его подразделов – глубокое обучение) снижает цену на качественные прогнозы. За ту же цену в единицах вычислительной мощности Google предоставляет перевод более высокого качества. Цена прогнозов аналогичного качества значительно снизилась.

Инновации в прогностических технологиях влияют на традиционно связанные с прогнозом сферы, такие как обнаружение финансового мошенничества. Здесь наблюдается такой прогресс, что эмитенты кредитных карт выявляют и пресекают случаи мошенничества раньше, чем пользователи успевают их заметить. И все же улучшение происходит постепенно. В конце 1990-х с помощью передовых тогда методов удавалось предотвратить около 80 % мошеннических транзакций [20]. К 2000 году эти показатели поднялись до 90–95 %, а сегодня достигают 98–99,9 % [21]. Последний рывок стал результатом машинного обучения: разница между 98 и 99,9 % огромна.

Кажется, что от 98 % совсем недалеко до 99,9 %, но, если ошибки обходятся дорого, важно действовать постепенно. Улучшение с 85 до 90 % означает, что количество ошибок уменьшилось на треть. А с улучшением с 98 до 99,9 % ошибок стало в 20 раз меньше. Про такой показатель уже не скажешь «постепенно».

Падение цены на прогноз меняет и человеческую деятельность. Как первоначально компьютеры использовались для арифметических вычислений, таких как учет численности и разнообразные таблицы, так и первые прогнозы, полученные в результате машинного обучения, применялись для решения обычных прогностических задач. Помимо обнаружения мошенничества в них входили кредитоспособность, медицинская страховка и управление ресурсами.

Кредитоспособность – это прогноз вероятности погашения кредита заемщиком. Для медицинской страховки рассчитывали сумму, которую страхователь потратит на лечение. В управлении ресурсами важен прогноз загрузки склада в определенный день.

Не так давно возникли совершенно новые категории прогностических задач. Многие из них считались невыполнимыми до недавнего прогресса в технологии машинного интеллекта, в том числе распознавание объектов, языковой перевод и разработка лекарственных средств. Возьмем, к примеру, широко известный ежегодный конкурс ImageNet Challenge. Распознавание объектов – не всегда легкая задача и для человека. В данных ImageNet содержится множество категорий объектов, в том числе породы собак и другие схожие изображения. Не всегда можно уловить разницу между тибетским мастифом и бернским зенненхундом или между сейфовым и кодовым замком. Люди ошибаются примерно в 5 % случаев [22].

Если сравнивать первый (2010) и последний (2017) конкурсы, то прогнозы заметно улучшились. На рис. 1 приводится график точности победителей по годам. На вертикальной оси отмечена частота ошибок (поэтому чем ниже, тем лучше). В 2010 году лучшие прогностические машины неверно распознавали 28 % изображений. В 2012 году конкурсанты впервые использовали глубокое обучение, и частота ошибок снизилась до 16 %. Как отмечает профессор Принстона, IT-специалист Ольга Русаковская, «2012-й действительно стал годом огромного прорыва в точности, и это доказывает эффективность модели глубокого обучения, существующей уже несколько десятков лет» [23].

Рис 1 Временной график ошибок в распознавании объектов Алгоритмы улучшались - фото 2

Рис. 1. Временной график ошибок в распознавании объектов

Алгоритмы улучшались быстро, впервые человеческий эталон был превзойден в 2015-м. К 2017 году у большинства участников было уже в два раза меньше ошибок. Машины стали распознавать объекты лучше человека [24].

Последствия удешевления прогнозов

Нынешнее поколение ИИ пока отстает от разумных машин из научной фантастики. У нас нет ЭАЛа из «2001: Космическая одиссея», «Скайнет» из «Терминатора», Си-Три-Пи-О из «Звездных войн». Если современный ИИ способен только на прогностику, почему вокруг него такой ажиотаж? Да потому, что прогноз действительно важен. Не все это понимают, но прогноз имеет значение во всех сферах человеческой деятельности, в том числе в деловой и частной жизни. Решения принимаются на основе прогнозов; чем они качественнее, тем полнее информация и, следовательно, тем лучше результаты.

Прогноз можно назвать «добычей полезной информации», что слегка отдает шпионажем [25]. Машинный же прогноз – это искусственная выработка полезной информации, а она всегда во главе угла. Качество прогноза влияет на итоги чего бы то ни было, как мы объяснили в примере с выявлением мошенничества. Благодаря снижению цены на прогноз мы делаем его полезным для многих других сфер, открывая его безграничные возможности, – например, машинный языковой перевод, который раньше нельзя было даже вообразить.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джошуа Ганс читать все книги автора по порядку

Джошуа Ганс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Искусственный интеллект на службе бизнеса отзывы


Отзывы читателей о книге Искусственный интеллект на службе бизнеса, автор: Джошуа Ганс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x