Ханна Фрай - Hello World. Как быть человеком в эпоху машин
- Название:Hello World. Как быть человеком в эпоху машин
- Автор:
- Жанр:
- Издательство:ООО «ЛитРес», www.litres.ru
- Год:2018
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ханна Фрай - Hello World. Как быть человеком в эпоху машин краткое содержание
Hello World. Как быть человеком в эпоху машин - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Прежде чем мы углубимся в изучение этой темы, возможно, стоит ненадолго отвлечься и поговорить о том, что же такое алгоритм. Хотя этот термин у всех на слуху, смысл самого слова довольно туманный. Формально определение таково [16]:
Алгоритм (сущ.): порядок действий, которые необходимо совершить для решения той или иной задачи или достижения заданной цели, особенно с помощью компьютера.
Всего-то. Алгоритм — это просто набор инструкций, которые помогают шаг за шагом дойти от исходных данных до решения задачи. В широком смысле рецепт пирога — тоже алгоритм. Под это определение подпадают и советы, которые вы даете заблудившемуся приезжему. Инструкции из IKEA, видео с YouTube , где вам показывают, что и как сделать, даже всевозможные практические руководства — теоретически алгоритмом можно считать любой перечень инструкций, в котором содержится полная информация о том, как достичь конкретной цели.
Однако область применения этого термина несколько иная. Обычно алгоритмом называют нечто более специальное. Алгоритм действительно представляет собой набор пошаговых инструкций, но при этом почти всегда речь идет о математическом объекте. Используя уравнения, арифметические и алгебраические действия, матанализ, логику и теорию вероятностей, алгоритм превращает ряд математических операций в компьютерную программу. Ему предоставляют данные из жизни, ставят задачу и запускают его, чтобы дальше он сам продирался через формулы к ответу. Именно алгоритмы делают информатику настоящей наукой, и благодаря им машины сотворили за последние десятилетия массу самых удивительных чудес.
Существует несметное множество всевозможных алгоритмов. Каждый из них имеет свое предназначение, свои отличительные особенности, свою изюминку и свои недостатки, и до сих пор неясно, как их лучше классифицировать. Но в целом удобно выделить четыре основные категории задач, которые выполняют алгоритмы [17]:
1. Расстановка приоритетов — составление упорядоченного списка
Исходя из ранжирования результатов поиска, Google подсказывает вам, какую страницу открыть в данный момент. Netflix предлагает вам очередной фильм. Навигатор выбирает для вас кратчайший путь. Все они упорядочивают колоссальное множество вероятных опций, производя вычислительный процесс. Deep Blue, в сущности, тоже занимался приоритизацией, то есть анализировал все возможные ходы фигур на доске и находил те, что гарантировали самые высокие шансы на победу.
2. Классификация — выбор категории
Когда мой возраст приблизился к тридцати годам, Facebook завалил меня рекламой колец с бриллиантами. И как только я наконец вышла замуж, отовсюду в интернете посыпались предложения тестов на беременность. Такими маленькими неудобствами я обязана алгоритмам классификации. Любимые алгоритмы рекламщиков, руководствуясь вашим личным профилем, исподтишка записывают вас в группу лиц с определенными интересами. (Пусть даже они угадывают верно, но если во время деловой встречи на экране вашего компьютера неожиданно всплывает реклама тестов на овуляцию, это действует на нервы.)
Именно такие алгоритмы автоматически отсортировывают и удаляют посторонние ролики на YouTube , подписывают ваши отпускные фотографии и, сканируя рукопись, идентифицируют закорючки на странице как буквы.
3. Ассоциирование — выявление связей
Ассоциирование — это поиск и описание взаимосвязи между объектами. Например, сайты знакомств, вроде OkCupid , ищут связи между пользователями и подбирают пары, используя алгоритмы поиска ассоциаций. Примерно так же устроена рекомендательная система Amazon — она находит нечто общее между вашими интересами и интересами предыдущих покупателей. Вот почему пользователь сайта Reddit с ником Kerbobotat , купив на Amazon бейсбольную биту, получил интересное предложение: “Возможно, вам понравится эта балаклава” [18].
4. Фильтрация — выделение важной информации
Алгоритмы нередко помогают изъять часть информации, чтобы обратить внимание на главное, поймать сигнал среди шумов. Иногда они делают это в буквальном смысле слова — так, в голосовых помощниках, например Siri, Alexa и Cortana , чтобы расшифровать вашу речь, алгоритмы распознавания, предварительно должны выделить из шумового фона ваш голос. Иногда это не шум как таковой, а метафора: Facebook и Twitter заполняют вашу ленту, уже зная, что вас обычно интересует, и подбирая соответствующую информацию.
Можно придумать огромное множество алгоритмов, совмещающих эти функции. Так устроен, например, сервис UberPool , который подбирает потенциальных попутчиков для совместных поездок на такси. Зная начальную и конечную точки маршрута, программа должна перебрать все возможные пути к вашему дому, найти других пользователей, которым надо ехать в ту же сторону, и определить вас в одну машину — и при этом в первую очередь предложить такие маршруты, чтобы водителю пришлось как можно меньше крутиться по улицам [19].
Алгоритмы все это умеют. Другой вопрос: как они это делают? Опять-таки мы можем выделить суть, хотя вариантов не счесть. В общем и целом все алгоритмы делятся на два основных типа в зависимости от принципа их работы, и далее в этой книге мы познакомимся с обоими.
1. Алгоритмы, основанные на системе правил
Работа алгоритмов первого типа основана на совокупности правил. Инструкции для них, четкие и недвусмысленные, составляет человек. Такой алгоритм подобен рецепту пирога. Шаг первый: сделать то-то. Шаг второй: если то, тогда это. Алгоритм вовсе не обязательно будет простым — есть масса возможностей для создания сложнейших программ такого типа.
2. Алгоритмы машинного обучения
Принцип действия алгоритмов другого типа сродни обучению живого существа. Для аналогии представьте себе, как можно было бы научить собаку давать лапу. Нет смысла проводить с ней подробный инструктаж. Вам как дрессировщику надо самому четко понимать, чего вы хотите добиться от собаки и как вы ее поощрите, когда она выполнит команду. Надо только закрепить правильную реакцию, игнорируя ошибочную, и дать собаке потренироваться, чтобы она сама выработала нужный рефлекс. В программировании такая схема называется алгоритмом машинного обучения и подпадает под более широкое понятие искусственного интеллекта , ИИ. Вы вводите в компьютер данные, ставите цель, обеспечиваете обратную связь, если алгоритм выбирает верный путь, — и предоставляете ему самостоятельно искать оптимальное решение.
Оба варианта имеют свои плюсы и минусы. Алгоритмы, основанные на системе правил, просты для восприятия, поскольку инструкции для них пишут люди. Теоретически кто угодно может прочитать правила и аккуратно выполнить все пункты по порядку [20]. Однако в этом преимуществе кроется их изъян. Основанные на системе правил алгоритмы решат задачу только в том случае, если люди знают, какую инструкцию для них написать.
Читать дальшеИнтервал:
Закладка: