Дэниэл Деннет - Опасная идея Дарвина: Эволюция и смысл жизни
- Название:Опасная идея Дарвина: Эволюция и смысл жизни
- Автор:
- Жанр:
- Издательство:Литагент НЛО
- Год:2020
- Город:Москва
- ISBN:9785444814178
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэниэл Деннет - Опасная идея Дарвина: Эволюция и смысл жизни краткое содержание
Опасная идея Дарвина: Эволюция и смысл жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Следует ли из этого, что ни один из алгоритмов на моем «Тошиба» не может победить в шахматах? Вовсе нет! Я уже признался, что алгоритмы для игры в шахматы на моем компьютере непобедимы, когда речь идет об игре против одного соперника-человека – против меня. Я не очень хороший шахматист, но, полагаю, наделен «интуицией» не в меньшей мере, чем любой случайный прохожий. Однажды я, быть может, одержу победу над своей машиной – если буду много практиковаться и упорно работать, – но программы на моем «Тошиба» элементарны в сравнении с современными шахматными программами-чемпионами. Если говорить о них, то вы можете смело жизнью поклясться , что они каждый раз будут одерживать верх надо мной (хотя и не над Бобби Фишером). Никому не советую и в самом деле ставить жизнь на кон в споре о сравнительном совершенстве этих алгоритмов – я могу улучшить свои результаты, и мне вовсе не нужна ваша жизнь на моей совести, – но, на самом деле, если дарвинизм верен, то вы и ваши предки не проиграли ни одной столь же рискованной ставки, сделанной на алгоритмы, встроенные в «механизмы» вашего тела. Именно это и делают организмы каждый день с момента зарождения жизни: они клянутся головой, что алгоритмы, создавшие их и (если они входят в число организмов-счастливчиков, обладающих мозгом) действующие внутри них, будут поддерживать их жизнь достаточно долго для того, чтобы они обзавелись потомством. Мать-Природа никогда не стремилась к абсолютной уверенности; ей вполне достаточно высоких шансов. А потому мы склонны ожидать , что, если мозг математиков проигрывает алгоритмы, то это будут алгоритмы, которые вполне успешно отличают истинное от неверного, не будучи при этом абсолютно надежными.
Как и все алгоритмы, алгоритмы для игры в шахматы на моем «Тошиба» приводят к гарантированным результатам; но это не значит, что они обязательно поставят мне шах и мат: они всего лишь будут играть в шахматы по правилам . Это – все, для чего они «предназначены». Из Чрезвычайно большого числа алгоритмов, гарантированно играющих в шахматы в соответствии с правилами, одни будут лучше других, хотя ни про один нельзя сказать, что он гарантированно выиграет у другого, – по крайней мере, это не то, что можно было бы надеяться доказать математически, даже если грубые математические факты таковы, что исходное состояние программы x и программы y было таково, что x победила бы y в любой возможной между ними партии. Это означает, что следующее доказательство ошибочно:
x превосходно выигрывает в шахматы;
не существует (осуществимого на практике) алгоритма, обеспечивающего победу в шахматах;
следовательно : талант x невозможно объяснить тем, что x проигрывает алгоритм.
Очевидно, что вывод неверен: уровень алгоритмов – это именно тот уровень, на котором можно объяснить, почему мой «Тошиба» побеждает меня в шахматах. Дело не в том, что его питает какое-то особенно мощное электричество или что в его пластиковом корпусе таится секретный резервуар élan vital . Его превосходство над другими компьютерами, играющими в шахматы (я могу победить совсем простые), обеспечивает более совершенный алгоритм.
Тогда какого рода алгоритмы задействуют математики? Алгоритмы «для» того, чтобы попытаться выжить . Как мы видели в своих рассуждениях об обеспечивающих выживание роботах в предыдущей главе, такие алгоритмы должны быть способны к бесконечно изобретательной проницательности и планированию; они должны бы были успешно опознавать пищу и убежище, отличать друга от врага, учиться опознавать предвестников весны как предвестников весны, отличать веские доводы от пустых и даже – как своего рода дополнительный побочный талант – опознавать математические истины как математические истины. Разумеется, такие «дарвиновские алгоритмы» 771не были спроектированы лишь для этой особой цели – не более, чем наши глаза были спроектированы для того, чтобы отличать курсив от жирного шрифта, но это не означает, что они не обладают превосходной чувствительностью к подобным различиям, если представится случай их рассмотреть.
Итак, как мог Пенроуз упустить эту, как нам сейчас кажется, очевидную возможность? Он – математик, а математики в первую очередь заинтересованы в том Исчезающе малом подмножестве алгоритмов, которые, как они могут математически доказать, обладают интересными математическими свойствами. Я называю это созерцанием алгоритмов с точки зрения Бога. Такая позиция аналогична рассмотрению с той же точки зрения томов в Вавилонской библиотеке. Можно «доказать» (в чем бы ни заключалась польза такого доказательства), что в Вавилонской библиотеке есть один том, где в точном алфавитном порядке перечисляются все телефонные номера абонентов Нью-Йорка, чье состояние на 10 января 1994 года составляло больше миллиона долларов. Так должно быть – в Нью-Йорке не может быть настолько много абонентов-миллионеров, а потому один из возможных томов библиотеки должен содержать их полный список. Но найти – или написать – такую книгу будет сложнейшей эмпирической задачей, чреватой множеством неопределенностей и спорных решений, даже если мы просто рассмотрим список в ней как подмножество имен, уже напечатанных в существующей в реальности телефонной книге, содержащей актуальную на 10 января 1994 года информацию (и проигнорируем те, чьи номера в ней не указаны). Хотя мы и не можем взять такую книгу в руки, можно дать ей название – так же как мы титуловали Митохондриальную Еву. Озаглавим ее Мегатом . И мы можем доказывать истинность высказываний в отношении Мегатома : например, первая буква на странице, где есть шрифт, – буква «А», но первая буква на последней странице со шрифтом – не «А». (Разумеется, это не вполне соответствует требованиям математического доказательства, но каковы шансы на то, что ни у одного телефонного абонента, чья фамилия начинается на «А», нет миллиона или что во всем Нью-Йорке таких миллионеров наберется лишь на одну страницу?)
Как я отмечал на с. 66, математики обычно думают об алгоритмах с точки зрения Бога. Например, они заинтересованы в том, чтобы доказать, что существует некий алгоритм с каким-то интересным свойством или что такого алгоритма нет , и чтобы доказать это, не нужно на самом деле искать алгоритм, о котором вы говорите, – скажем, вытаскивая его из груды алгоритмов, записанных на дискетах. Наша неспособность найти Митохондриальную Еву (ее останки) также не мешает нам с помощью дедукции что-то о ней узнавать. Таким образом, эмпирическая проблема отождествления в таких формальных умозаключениях встает нечасто. Теорема Гёделя говорит нам, что ни один из алгоритмов, которые можно проиграть на моем «Тошиба» (или любом ином компьютере), не обладает определенным математически интересным качеством: быть внутренне непротиворечивым производителем доказательств арифметических фактов, который (при условии наличия достаточного времени) производит их все .
Читать дальшеИнтервал:
Закладка: