Коллектив авторов - 100 великих научных открытий
- Название:100 великих научных открытий
- Автор:
- Жанр:
- Издательство:Книжный клуб «Клуб семейного досуга»
- Год:2018
- Город:Харків
- ISBN:978-617-12-5819-8, 978-617-12-5821-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - 100 великих научных открытий краткое содержание
100 великих научных открытий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 1930-х появились высказывания о том, что поглощаемая хлорофиллом энергия света должна быть направлена не на разложение СО 2, а на разрыв одной связи ОН в молекуле воды. Доказательства данного предположения были получены в 1941 г., и решающую роль при этом сыграли исследования с использованием изотопов кислорода ( 16О, 17О и 18О), соотношения между которыми в воде, атмосфере и углекислом газе неодинаковы.
В 1945 г. А. Виноградова и Р. В. Тейс обнаружили совпадение изотопного состава кислорода природной воды и синтезированной из водорода и кислорода, выделяемого зеленым листом на свету (фотосинтетического). С. Рубен и М. Камен применили в исследованиях иной принцип. Сначала они дали водорослям воду, обогащенную 18О, ― и растения выделили кислород с очень высокой концентрацией этого изотопа. Затем ученые «подкормили» водоросли углекислым газом, также обогащенным 18О, ― однако на выделенном кислороде это не сказалось. Тогда-то и стало ясно, что основная масса кислорода, выделяемого при фотосинтезе, принадлежит воде, то есть место имеет не разложение СО 2, а распад молекулы воды, вызываемый энергией света.
Собственно, расщепление воды происходит в первой, «световой» фазе фотосинтеза. Еще в 1930-х это показал К. Б. ван Ниль в ходе изучения пурпурной серобактерии, которой для фотосинтеза нужен сероводород (H 2S). Как оказалось, в качестве побочного продукта жизнедеятельности бактерия выделяет атомарную серу, а уравнение ее фотосинтеза выглядит так: СО 2 + Н 2S + свет → углевод + 2S.
Поскольку у серобактерий, в чьем метаболизме роль кислорода играет сера, фотосинтез возвращает эту серу, ван Ниль предположил, что в любом фотосинтезе источником кислорода является не углекислый газ, а вода. Последующие исследования подтвердили: первой стадией процесса является расщепление молекулы воды. Само улавливание энергии состоит из двух этапов и осуществляется в раздельных кластерах молекул — фотосистеме I и фотосистеме II. Номера кластеров отражают порядок, в котором эти процессы были открыты, однако реакции происходят сначала в фотосистеме II и лишь затем — в фотосистеме I.
Итак, процесс запускается в фотосистеме II, когда излучаемые солнцем фотоны попадают в молекулы хлорофилла, содержащиеся в мембранах клеточных органелл хлоропластов. Фотон сталкивается с 250–400 молекулами фотосистемы II, и энергия, резко возрастая, передается молекуле хлорофилла. В результате молекула хлорофилла теряет два электрона (которые принимает другая молекула — акцептор электронов), а молекула воды распадается, и электроны ее атомов водорода возмещают электроны, потерянные хлорофиллом.
После этого выстроенные цепочкой молекулы-переносчики быстро перебрасывают электроны на более высокий уровень, и часть выделенной энергии идет на образование аденозинтрифосфата (АТФ) — одного из основных аккумуляторов энергии в клетке. Тем временем молекула хлорофилла фотосистемы I поглощает фотон и отдает электрон другой молекуле-акцептору, а на место утерянной заряженной частицы встает электрон, прибывший по цепи переносчиков из фотосистемы II. Энергия электрона фотосистемы I и ионы водорода, образовавшиеся при расщеплении воды, идут на образование НАДФ-Н — еще одного источника энергии.
После того как солнечная энергия поглощена и запасена, наступает черед образования глюкозы. Основной механизм синтеза сахаров в растениях был открыт Мелвином Калвином, который в 1940-х вырастил водоросль в присутствии углекислого газа, содержащего радиоактивный углерод-14. Прерывая фотосинтез на разных стадиях, ученый установил химические реакции «темновой» фазы и открыл так называемый цикл Калвина — процесс превращения солнечной энергии в глюкозу. Сначала молекулы углекислого газа соединяются с «помощником» — пятиуглеродным сахаром рибулозодифосфатом (РДФ). Затем за счет энергии солнечного света, запасенной в АТФ и НАДФ-H, происходит шестиуровневая цепочка реакций связывания углерода с образованием глюкозы, выделением кислорода и воссозданием РДФ.
Очевидно, что обеспечение кислородом земной атмосферы — далеко не единственная цель фотосинтеза. Этот биологический процесс необходим не только людям и животным, но и самим растениям, основу жизнедеятельности которых составляют органические вещества, образующиеся в ходе фотосинтеза.
Электролиз
Процесс электролиза — разложения веществ под действием электрического тока — был открыт английским физиком-экспериментатором Майклом Фарадеем (1791–1867). Летом 1832 г. Фарадей провел эксперимент, целью которого было узнать: оказывает ли электрический ток химическое воздействие. Смочив куркумовую бумажку раствором сульфата натрия, ученый поместил ее одним краем против кончика разрядного провода, собирающего отрицательный заряд электрической машины, а другим соединил со вторым проводом. Затем сделал около 50 оборотов машинного диска, который генерировал ток путем трения о специальные подушки, — и «конец бумажки, обращенный к кончику разрядного провода, окрасился благодаря присутствию свободной щелочи». Но вызван ли данный эффект только действием тока? Видоизменив объект исследования, Фарадей поставил опыт, где «не допускалось контакта металла с разлагаемым веществом». Смочив в растворе сульфата натрия и куркумовую бумажку, и лакмусовую, ученый сложил их вместе и на некотором расстоянии от краев закрепил электроды, один из которых был связан с кондуктором машины, собирающим положительный заряд, а другой — с разрядным проводом. Через какое-то время в процессе вращения машины «сделалось очевидным разложение: край лакмусовой бумажки покраснел от выделившейся кислоты, а край куркумовой окрасился от одновременного выделения щелочи». Более того, кислота собралась около отрицательного края, а щелочь — возле положительного.
11 июля Фарадей установил, что бумага, смоченная раствором йодистого калия и крахмала, весьма чувствительна к направлению электрического тока от вольтова столба — устройства в виде вертикального цилиндра, состоящего из соединенных между собой колец цинка, меди и сукна, пропитанных кислотой.
8 сентября Фарадей заметил, что площадь окрашенных участков на бумажках зависит от времени пропускания тока, и решил выяснить количественные соотношения в процессах воздействия электричества на растворы.
22 октября был проведен решающий эксперимент. Фарадей изготовил электролитическую ячейку и расположил у электродов влажные индикаторные бумажки. Между ними чередовались пласты геля, образованного при свертывании коллоидного раствора, содержащего соль (сульфат калия), чистогогеля, который проводит ток как обыкновенный раствор, и те же бумажки. Пропуская ток через ячейку, Фарадей наблюдал, что индикаторы окрашиваются только у электродов, причем лакмусовая бумажка показывала кислоту, а куркумовая — щелочь. Все остальные бумажки не окрашивались, и это означало, что электрохимическое действие происходит только у электродов.
Читать дальшеИнтервал:
Закладка: