Коллектив авторов - 100 великих научных открытий
- Название:100 великих научных открытий
- Автор:
- Жанр:
- Издательство:Книжный клуб «Клуб семейного досуга»
- Год:2018
- Город:Харків
- ISBN:978-617-12-5819-8, 978-617-12-5821-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - 100 великих научных открытий краткое содержание
100 великих научных открытий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Сделать это удалось именно Иидзиме, который догадался, что нанотрубки можно создавать самостоятельно, воздействуя электрическим разрядом на распыленный графит. Измерив полученный образец, ученый выяснил, что диаметр трубки составляет несколько нанометров, а длина — в тысячу раз больше. По структуре трубка может быть как одностенной, простой, так и составной, устроенной по принципу матрешки, — но в любом случае каждая стенка представляет собой графитовую решетку с шестиугольными ячейками, а окончания трубок похожи на половину молекулы фуллерена.
Сейчас ученые самых разных областей — химики, медики, физики, математики, астрономы и пр. — чуть ли не соревнуются, исследуя свойства фуллерена и пытаясь на их основе создавать новые углеродные материалы. Недаром японский ученый Э. Осава сказал, что если бы не был открыт фуллерен и нанотрубки, то еще несколько десятилетий никто бы ничего не знал о нанотехнологиях.
Как ни странно, ученые и поныне спорят, каким способом синтезируются углеродные наноструктуры, и предлагают свои модели этого процесса. Тем не менее новые суперпрочные материалы уже активно используются в разных отраслях промышленности. Например, из углеродных наноструктур изготовляются гибкие электроприборы и разнообразные транзисторы, фотодетекторы, оптические модуляторы и поляризаторы света, лазеры и генераторы терагерцевых излучений, приложения для хранения и генерации энергии. А еще — краски, покрытия, высокопрочные композитные материалы вроде углепластика и многое другое.
Физика
Атмосферное давление
Удивительно, но уже в V–III вв. до н. э. греческие мудрецы (в частности, Аристотель, Эпикур и Демокрит) догадывались о том, что вся материя — в том числе воздух — неоднородна: ее составляют крошечные, незаметные невооруженным глазом, круглые частицы-атомы. У Аристотеля даже возникла любопытная идея — якобы все предметы, и природные, и рукотворные, представляют собой соединение четырех элементов-стихий: земли, огня, воды и воздуха. Значит, воздух что-то да весит, думал философ; для проверки он брал кожаный мешок, взвешивал, затем надувал его и снова измерял массу. Впрочем, о способности воздуха оказывать давление Аристотель не подозревал. А про всасывающий эффект безвоздушного пространства (явление, на котором основано действие насоса) говорил, будто все это из-за страха природы перед пустотой.
О тяжести воздуха говорилось и в трудах арабского ученого X–XI вв. Ал Хайсамы (Альгазена). Более того, ученый писал, что атмосферная рефракция — преломление солнечных лучей, подчас вызывающее миражи, — возникает из-за изменений плотности воздуха с высотой: чем выше, тем она меньше. Измеряя, под каким углом солнце заходит за горизонт, Альгазен рассчитал, что высота атмосферы составляет 52 000 шагов, или 40 км. Таким образом, уже в Средние века стало известно, что сумеречный свет — это лучи, преломленные в верхних слоях атмосферы, и от высоты последней зависит продолжительность сумерек. И все же большинство европейцев почему-то были уверены, будто насос качает воду не посредством воздушного давления, а из страха пустоты.
Когда итальянский астроном Галилео Галилей увидел, как поршневой насос высасывает из колодца воду, вместо того чтобы выталкивать ее снизу, ему тоже показалось, что пространство просто не хочет пустовать. Вычислять степень этого «нежелания» ученый предложил по максимальной высоте, на которую насос способен поднять воду. На такую мысль его навело наблюдение за поведением механизма в связи с уровнем жидкости: с 10-метровой глубины насос уже воду не качал. Поэтому Галилей рассудил так: поскольку вес меди, из которой сделан поршень, вдевятеро превышает вес воды, а высота водного столба во столько же раз больше высоты поршня — чтобы последний не был разорван пустотой, нужно противодействие, составляющее килограмм на квадратный сантиметр.
Несмотря на то, что теория Галилея выглядела несколько наивно, в целом его расчеты были верны, а уточнить эти данные смог ученик великого астронома — Эванджелиста Торричелли (1608–1647). Звание отца гидравлики он заслужил тогда, когда выяснил, что скорость вытекания жидкости из емкости через отверстие зависит от высоты отверстия. После этого открытия Торричелли решил узнать с помощью ртути, сколько весит воздух. Это было в 1643 г. По просьбе Эванджелисты его приятель Винченцо залил ртуть в метровую трубку из стекла, закрытую с одной стороны и открытую с другой, и погрузил отверстием в ртутную ванночку, предварительно заткнув его пальцем. Стоило убрать палец, как ртуть из трубки частично вышла, оставшаяся часть образовала 760-миллиметровый столбик (если мерить до уровня ртути в ванночке), а над ним возникла «торричеллиева пустота», лишенная воздуха. Далее ученый вставил первую трубку еще в одну, бóльшую, и все вместе снова-таки опустил в ртуть, только с водой на поверхности. Вытаскивая трубки, Винченцо и Эванджелиста заметили, что при прохождении через водный слой из внутреннего отверстия вылилась ртуть, а во внешнее попала вода.
Увиденное ученые объяснили тем, что на ванночку давят целых 80 км воздуха, которые и не дают вылиться ртути из трубки, ведь давление ртутного столба должно сравняться с давлением атмосферы. Но вода в 13,6 раза легче ртути, поэтому не может удержать ее во внутренней трубке, зато сама поднимается во внешнюю, в 13,6 раза превышая ртутный столбик. Более того, Торричелли заметил, что в зависимости от температуры воздуха (а значит, и от его давления) высота ртутного столба меняется, то есть сила, удерживающая ртуть в трубке, действует не изнутри, а снаружи и к «пустоте» никакого отношения не имеет.
Очевидно, что трубка Торричелли сыграла роль примитивного барометра — прибора для измерения атмосферного давления, который впоследствии стал использоваться для точных наблюдений за состоянием погоды.
Об этих экспериментах итальянских ученых узнал француз Блез Паскаль (1623–1662), и его заинтересовал вопрос: изменится ли высота ртути в трубке, если подняться на гору? А на крышу высокого здания? Чтобы узнать это, ученый измерил ртутный столбик под горой Пюи-де-Дом и на самом пике, у входа в собор Нотр-Дам и на крыше, на 1-й ступени лестницы и на 90-й… Ответ был однозначный: чем больше высота ― тем ниже давление атмосферы (так, на горе перепад составил 84 мм). Эти выводы Паскаль изложил в труде «Равновесия жидкостей».
Одновременно с Торричелли и Паскалем (однако совершенно самостоятельно) исследованиями давления занимался немецкий физик Отто фон Герике (1602–1686). Сперва Отто взял шар из тонкого слоя металла и выкачал оттуда весь воздух, вследствие чего «подопытный» стал плоским. Ученый справедливо предположил, что виноват во всем внешний воздух, который своим давлением деформировал шар. Затем Герике продемонстрировал общественности еще одно «чудо» — «магдебургские полушария». В ходе эксперимента ученый соединил две металлические полусферы и изнутри образовавшегося шара принялся насосом откачивать воздух. В конце концов полусферы прижались одна к другой настолько крепко, что разорвать их не удалось даже нескольким парам грузовых коней. За процессом наблюдали все представители власти города Регенсбург, и результат их убедил: атмосфера имеет вес, которым и давит на Землю, — иначе что заставило бы полушария так сцепиться при выкачивании воздуха?
Читать дальшеИнтервал:
Закладка: