Коллектив авторов - 100 великих научных открытий
- Название:100 великих научных открытий
- Автор:
- Жанр:
- Издательство:Книжный клуб «Клуб семейного досуга»
- Год:2018
- Город:Харків
- ISBN:978-617-12-5819-8, 978-617-12-5821-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - 100 великих научных открытий краткое содержание
100 великих научных открытий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Карно не смог раскрыть причин таких энергопотерь, зато его выводы насчет того, что эффективность работы и коэффициент полезного действия тепловой машины зависят от величины перепада температур, заинтересовали английского физика Уильяма Томсона (1824–1907) и немецкого ученого Рудольфа Клаузиуса (1822–1888). Оба поняли, что в тепловой теории зияют дыры, и решили провести собственное исследование термических процессов.
Первым итогом этих изысканий стала работа Клаузиуса «О движущей силе теплоты», где ученый внес поправку в утверждение, что определенное количество тепла может совершить соответствующее количество механического движения. Поправка повторяла заключение самого Сади Карно: тепло способно двигать что-либо только в том случае, если оно передается от горячего предмета холодному. Клаузиус считал, что это вполне естественно, ведь в природе только нагретые объекты делятся своим теплом с окружающими и остужаются, а холодные тела сами по себе ничего не отдают. «Сами по себе» было важным уточнением, по мнению ученого, ведь нам вполне по силам «вынудить» холодный предмет понижать температуру теплого, просто этот процесс потребует некоторой «компенсации».
Со своей стороны, Томсон выяснил, сколько энергии обычно участвует в преобразованиях и какое количество тепла нужно затрачивать на работу. В своих докладах ученый писал: если механической энергии нужно совсем немного, чтобы выделилось тепло, то тепловой для совершения работы понадобится гораздо больше. Одно тело попросту не способно выделить такое количество теплоты, которого хватит, например, на вращение вала турбины. Поэтому мечта о вечном двигателе, который работал бы безостановочно лишь с помощью теплоты из воздуха, нереальна.
Двигаясь в том же направлении, Клаузиус доказал теорему Карно, согласно которой эффективность идеальных тепловых машин, где все процессы обратимы и равновесны, зависит исключительно от разности температур в резервуарах нагревания и охлаждения. Исходя из этого, второй закон термодинамики ученый описал следующим неравенством: приведенное тепло (отношение количества теплоты, которое затрачивается на изменение состояния системы, к температуре, при которой это состояние может измениться) всегда меньше или равно нулю. При обратимых процессах одно тело отдает другому столько же тепла, сколько принимает, и система сама собой возвращается в первоначальное состояние. При необратимых нагретое тело отдает холодному больше тепла, чем принимает, и если механическая энергия полностью переходит в теплоту, то тепло уже не может полностью трансформироваться в энергию движения.
Данное заключение стало основой теории, что в замкнутых системах, куда не поступает тепло извне и откуда не выходит наружу, упорядоченная энергия движения стремится перейти в беспорядочную энергию тепла, вследствие чего растет мера неупорядоченности (энтропия).
Теорию энтропии развил австрийский физик Людвиг Больцман (1844–1906). В его теореме говорится, что энтропия растет по мере увеличения хаотичности, с которой перемещаются элементарные частицы, составляющие систему. И если система закрыта от всяких внешних воздействий, то сама по себе ее энтропия не снизится, поскольку частицам не хочется добровольно «наводить порядок». В качестве примера Больцман привел упорядоченную систему — лед, представляющий собой кристалл с четкой сеткой неподвижных молекул. В обычных условиях тепло разрушает связи между молекулами льда, и они начинают беспорядочно двигаться во всех направлениях — энтропия повышается, образуется вода. Однако при тех же условиях вода уже не кристаллизуется — для этого ее надо будет специально охладить, а значит, без стороннего вмешательства ее энтропия не уменьшится.
Клаузиус распространил эту теорию на всю Вселенную, предположив, будто макросистема постоянно теряет тепло, и в конце концов все температуры сравняются, процессы остановятся — наступит тепловая смерть. Вроде бы логичное предположение — ведь многие процессы в нашем мире если и не односторонние, то более масштабные в прямом направлении, нежели в обратном. (Взять хотя бы ту же брошенную на пол книгу или, скажем, разбитую вазу, которая не восстановится только благодаря выделенной при падении энергии.) Так что же, мир катится к своей гибели? Вряд ли. Во-первых, уже после открытий Клаузиуса было доказано, что Вселенная не является замкнутой системой — она постоянно расширяется. А во-вторых, наши знания о ней ничтожно малы, и любые прогнозы относительно ее будущего остаются лишь догадками.
Эхолокация и ультразвук
Изучение ультразвука началось в первой половине XIX в., когда военное руководство Англии и Франции, издавна враждующих за колониальное господство, задумалось о возможности передачи акустических сигналов на дальние дистанции под водой. Это значительно повысило бы эффективность морских военных операций, потому ученые всего мира наперегонки принялись экспериментировать с подводным распространением звуковых волн. Так, в 1826 г. швейцарский физик Жан-Даниэль Колладон (1802–1893) пронаблюдал, за какое время звон колокола, установленного на дне Женевского озера, одолеет расстояние 16 км сквозь толщу 8-градусной воды. Одновременно с ударом в колокол на берегу был подожжен порох, и спустя 11,3 секунды в подводной слуховой трубе Колладон услышал звук. Так ученый рассчитал, что скорость сигнала составила 1412 м/с.
В 1850-х американцы додумались с помощью звука исследовать поверхность дна Атлантического океана, чтобы сориентироваться, как прокладывать через океан кабель телеграфа. Звук исходил снова-таки от подводного колокола, а команда на корабле принимала сигнал через спущенные с палубы трубы. Увы, идея себя не оправдала: звон колокола оказался слишком тихим, и морской шум попросту заглушил его. Тогда ученые поняли, что обычные звуковые частоты для передачи сигналов под водой не подходят — нужно генерировать акустические волны с большей частотой, направляя их организованными пучками.
Тридцать лет спустя французским физикам Пьеру и Жаку Кюри удалось обнаружить так называемое пьезоэлектричество («электричество от нажатия»). Возникало оно в кристаллах, когда их сдавливали, и чем сильнее, тем большей была величина заряда. Поставив обратный эксперимент, Кюри пропустили через кристалл ток с переменным напряжением, и «подопытный» завибрировал. Данный эффект ученые использовали для создания небольших ультразвуковых генераторов, а также приемников волн.
Через три года английскому исследователю Фрэнсису Гальтону (1822–1911) пришла в голову мысль, что если подуть на лезвие ножа, то получится высокочастотный свист. По этому принципу Гальтон сконструировал генератор, представляющий собой трубку, надетую на скрученный валиком лист металла с острой кромкой. Свист возникал тогда, когда воздух вдувался в трубку и попадал на острие. Используя вместо воздуха водород, можно было извлечь очень высокий звук, частотой около170 кГц (для сравнения: наше ухо разливает частоту 16–20 кГц).
Читать дальшеИнтервал:
Закладка: